FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION

FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in

BUSINESS ADMINISTRATION

by
David Hinds

2008

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UM! Number: 3325598

Copyright 2008 by
Hinds, David

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3325598
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To: Dean Joyce Elam
College of Business Administration

This dissertation, written by David Hinds, and entitled Social Network Structure as a
Critical Success Condition for Open Source Software Project Communities, having been

approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Susan Clemmons

Kaushik Dutta

Kenneth Lipartito

Debra VanderMeer

Mary Ann Von Glinow

Ronald M. Lee, Major Professor

Date of Defense: March 13, 2008

The dissertation of David Hinds is approved.

Dean Joyce Elam
College of Business Administration

Dean George Walker
University Graduate School

Florida International University, 2008

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright 2008 by David Hinds

All rights reserved.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION
I dedicate this dissertation to my mother and to my father. There are no words to

express how important they have been in my life and how much I love them.

Lillian Marie Hinds

1916 - 2007

Richard Howard Hinds

1916 - 2007

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I wish to thank my Major Professor, Ronald Lee, who walked with me throughout
this entire process, and who was both invaluable guide and source of inspiration. 1 am
grateful for all of my other committee members, each of whom provided me with his or
her special perspective and contribution to my thinking. [especially wish to thank Susan
Clemmons for her help and guidance through the statistical work. T am also appreciative
of the reading and helpful comments provided by J.C. Wang, as well as all of the help
and support provided by the “Musketeers,” my PhD student associates.

The data collection efforts for this research were extensive and [wish to thank
Karel Alemany who spent endless hours in extracting and compiling data, and also
Joseph Imperato who provided critical advice and help with the database work. We
utilized the research databases of the University of Notre Dame and the Libresoft Project,
and my thanks go to Greg Madey and the others who prepared and made these databases
available. [also recognize that funding for this work was provided through the
Dissertation Year Fellowship of the University Graduate School.

Without the love and support of my family, none of this would have been
possible. I thank my children Matthew, Kimberly, and Christopher for being so
wonderful and for encouraging me to go on. Finally, I am so grateful for my wife

Brenda who has always been the love of my life and who is my partner in so many ways.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF THE DISSERTATION
SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION
FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES
by
David Hinds
Florida International University, 2008
Miami, Florida
Professor Ronald M. Lee, Major Professor

In recent ycars, a surprising new phenomenon has emerged in which globally-
distributed online communities collaborate to create useful and sophisticated computer
software. These open source sofiware groups are comprised of generally unaffiliated
individuals and organizations who work in a seemingly chaotic fashion and who
participate on a voluntary basis without direct financial incentive.

The purpose of this research is to investigate the relationship between the social
network structure of these intriguing groups and their level of output and activity, where
social network structure is defined as 1) closure or connectedness within the group, 2)
bridging ties which extend outside of the group, and 3) leader centrality within the group.
Based on well-tested theories of social capital and centrality in teams, propositions were
formulated which suggest that social network structures associated with successful open
source software project communities will exhibit high levels of bridging and moderate
levels of closure and leader centrality.

The research setting was the SourceForge hosting organization and a study

population of 143 project communities was identified. Independent variables included

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measures of closure and leader centrality defined over conversational ties, along with
measures of bridging defined over membership ties. Dependent variables included
source code commits and software releases for community output, and soflware
downloads and project site page views for community activity. A cross-sectional study
design was used and archival data were extracted and aggregated for the two-year period
following the first release of project software. The resulting compiled variables were
analyzed using multiple linear and quadratic regressions, controlling for group size and
conversational volume.

Contrary to theory-based expectations, the surprising results showed that
successful project groups exhibited low levels of closure and that the levels of bridging
and leader centrality were not important factors of success. These findings suggest that
the creation and use of open source software may represent a fundamentally new socio-
technical development process which disrupts the team paradigm and which triggers the
need for building new theories of collaborative development. These new theories could
point towards the broader application of open source methods for the creation of

knowledge-based products other than software.

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION Liiiiiiiiiiciiieircerrieiariseeasssimiesssarsmsmssssonssssmsrssssstosmartissisisisensisan s an |
1.1, ReSEarch APProach ..o cverveereericcmmrnenienieersesissnassesse st et 5

[.2. RESCArC QUESLION wvvvvrireeteiieeraimieistnsnesrnestesae e snsra sttt et ssas s 7

IR T B T 1116 10) 1O PO EESOPPPPOUOPPP PPN 7

1.4, DiSSCrIALION SITUCIUIC. ..veoveerreereereersrerseerenseresesaessaesssessassesssasnnessnassesseassnssesaes 9

2. LITERATURE REVIEW L..iiiiiiiiierrinnieencreriseeisiarnianisesiannissseisasissis oo 13
2.1. Theoretical and Conceptual Foundations.......ceeeniiiniminnn. i3

2.2, S0OCIAl NEtWOTKS c.oiiieeiiircerreriereersreiir it e sttt 14

2.2.1. Social Network Analysis ..cc.eocvmeriiniinimnenineiaencincencnecenees 15

2.2.2. Social Network TREOTYvveivriiirinirie et 16

2.2.3. Social Capital THEOIY ..c.ccvviirierrienreririaieneisiss i 18

2.3. Open SoUrCE SOTIWAICT c.c.eeureriiiiiieserre et s 20

2.3.1. DeSCrIPVE STUAIES vevevevvrrrreirrirrisierierneasinsieeress s cesesteeenssnsnennes 21

2.3.2. Mechanisms and Metaphiorsoiiriiencneseenecnencnennens 28

2.3.3. Developer MOtVALIONcccv e isiees st esessensesnsneses 32

2.3.4, SUCCESS STUAIES ..veervrirerrreriecerarrneeerensniessarassssssassessesasesansssasssesnasons 33

2.3.5. Social Network Perspeclives ..o e eeciiiminiirrmiesieniesssessiesessasnnssens 37

2.4. Teams and Work Groups ..c.oeoveeercenmnienieiinniiesienrerissesessn et st 40

2.4.1. Work Group EffectiVenesscoeiiiinneninicnneniennescenencn s 40

2.4.2. Emergent Organizationsceeiomensesimisesaseemceeiiees 43

2.4.3. Social Network PErspectives .cooiieeieiesenenesisescnseennneeens 44

2.5, COMMUINILIES 1eeeviireeerirerreeerrereesssassesereneesseessessasassssserasssasssnstsasanassssassssnssnoose 46

2.5.1. Communities of PracliCe.....coverccrnrcerniiiniinnieisnnieenernsesnsesssenne e 47

2.5.2. Online COMIMUNITIES iveevcriereeroreerreeerieesrtisiansseanesserrnsrsessnesnssosinesssass 50

2.5.3. Networks of PracliCCui e ccrreenieiiiisniiiiininessssresssnscassosssssees 51

2.5.4. Social Network Perspeclives .ovioriieimainessennenrenensncsesesenns 52

2.6, INNOVALION crviieiieiiecriiec st reeestesae e s eeesaresressbsasbsaeb b s b e s e s asn e s e abnanaseronansnasas 54

2.6.1. Exploration versus EXploitation ... 55

2.6.2. Open and Distributed INNOvation.....c.ceiiiiinieoeenneenc e 56

2.6.3. Social Network Perspeclives .ooioiiieiimiisemenince e 57

3. RESEARCH MODELS AND PROPOSITIONS ...oriiiiininnrcssciecinisn s 58
3.1. Conceptual Research Model ... 58

3.2. ReSCAICH COMBIITUCES....vveievreeiiersraresnerrerssissseessnresaesnessesssssssunssasenasnasscneas 60

3.2.1. SUDZIOUPS cucrevecerreererereieeirerctesesee e snss st ss bbb 62

3.2.2. ClOSUIC...ueieeeiieeeeeerecaiereesseteasenesseesanessstsssrssesbesatanssaasansnsanessasossaessasesses 64

3.2.3. BIIAZING coerireeiciceieteiee e st et 67

3.2.4. Leader Centralily ...voeeeeececenierinisissirneiesesssesesinsceesessseneseesensnsnnssas 68

3.2.5. COMMUIILY SUCCESS..ccvereeermreeriinieririaeseisisnsssssoesste s e eensnesneseesus 69

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3. Social Network Mode!l and PropoSIIONS ...eeeeerinvenicnnceninentincennicesennes 70

3.3.1. Group ClOSUIC...uiiieeeiecetcceiesscimesteesss e ss s te s et eenssenaessisssees 70
3.3.2. COIC ClOSUIE covuvvreeeeeereeeeesieneseseeasresntssasersnsarssasssassssssssessnssnassnsossaesans 72
3.3.3. Peripheral Two-Mode CIOSUIE ..ueriiieeirerienrrecienteieee e 73
3.3.4. Core Brid@INg cooieeeieieriri ettt s 74
3.3.5. Administrator Bridg@ing. ..t 75
3.3.6. Administrator Centralily ...eeeeeveerrencenieesinnnntininii i 75

4. RESEARCH METHODOLOGY ..ottt ceiteerieste et 77
4.1, SHUAY DESIEN ccutioiiiiiriciirreniie ettt et 77
4.1 1. Unit Of ANalySiS.cccieiiiiiinisstes ettt 77
4.1.2. S1UdY POPUIALION. .eeceecierireereeieete st teeree st se st eacsmenen 77
4.1.3. Research Method ..o ereere vttt 79
4.2, RESCAICH SEUIME ... ieteieererereeeerevenissrce e s et sse st et seneneeneae 81
4.2.1. D12 SOUICES ceveeeereererrnreersssereicsnrinssesesnnmessstnessssesssessssessseesessassssnsses 82
4.2.2. Data Element SeleCtion.....cveiicreerrirriiciirnciitenseeesesn e esnesneeeas 82
4.3. Dependent and Control Variables. ..o 83
4.3.1. COMMUNILY SUCCESS.ccceeriruiririrrmiriesieerrrsssstsstssseesesreseresessssassssasaessanes 83
4.3.2. CONMTOIS ceivieirrieireeiieeieecseescer e e assne e cessbs s s e s s aeen s nassses s e s eaceaneeas 86
4.4, Social Network Variablesoieeeevaieniminiie et 87
AT, NEIWOIKS .oveeceiieeieceieeeeeeesesssesestaseressteesae et ee s essaasnessat et as e s eteennerane 87
4.4.2. SUDZIOUPS .ceieireicircerecriste sttt ess st s 90
4,43, Formal Notalion .ottt ee et crccnnen s 90
4.4.4. Formal Speciflcalion. ..ot 93
4.5. Sampling and Data ColleCtion ..ottt 98
4.5.1. Sample Frame ..ottt 98
4.5.2. Data Compilation.....coocmiiiimereeiceeniee et e 101
4.5.3. Sample Profile .ottt 103

5. DATA ANALYSIS AND RESULTS.....oeicccieniiiitesrise e rsssee e 105
5.1, Preliminary ANlYSECS ...cucmccrerccrrnririsrenssenenrestsast ettt ssasassseess 105
5.1.1. Transformation of Variables. ..ot 106
5.1.2. OULEr ASSCSSIMICIT 1evveerivirrroerrseesisrssierrnresaressrsanesssnstessenansassassssns 108
5.1.3. Reduction of Variables ... eecccrimiiiiienieiee e 108
5.2. Descriptive and Correlation StatisliCs....ceuiuerienirimninsrcinn i, 110
5.3. Hypothesis TeSting . .coceorvueiieinicrrisinineesresiee et s 113
5.3.1. Research Hypotheses....omriiiirnienineeiennneseesntcncccneciinnns 113
5.3.2. Regression Methods.ccevrivneriiniivnenennnecensence e 117
5.4. TESUNGZ RESUILS..oieiiieieereeeecree st ettt 120
5.4.1. Group Densily...ccoceeeecervieecreniiinienenrsssts e e e 120
5.4.2. COre DENSILY cveeceivcerieceeeriiicnirie ettt s 121
5.4.3. Peripheral Two-Mode Density .o.eoeeeeercininiinennninenenciieescnecn 121
5.4.4. Core Membership Degrec . e 122
5.4.5. Administrator Membership Degree ..o, 122
5.4.6. Administrator Class Centralily ..o 122

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G. DISCUSSION ottt cesite sttt rrsstsceers e s sss e ssteaate s nasn s s b rs b et s ss st b e s eates 129

6.1. Summary of FINdingsS...coceveecvoinininiinineesecsntiiiiniesn e 129

B.1. 1. ClOSUIC .curirieeeeecreerresteetscestesseernerbresbs e e ssnessnesesnesenansnesesneeaeesses 129

G.1.2. BridgIng .coiiiieiiiiiieeienriisn e e 134

6.1.3. Leader Centralily c..oveeecrrecrecrerinnenenssenerissssesstssnssesseesseessssesneanes 137

6.2. Conjecturcs and Causalily...occverieieinierisrisnesesee sttt 139

6.3. The Insignificance of SUUCIUIC.....cviimirirenineee e, 147

6.3.1. Substitutes for the Social Network ..., 149

6.3.2. Reduced Need for Knowledge Transfer .o 151

7. CONCLUSIONS .ottt ettt eee e sees e sesseesessesesneaerbesn s e snsns st s s bastsssasbasasncanas 154
7.1, INPHCALIONS. ceruerieireeee et ettt s 155

7.1.1. Paradigm Disruption ..o 155

7.1.2. Requirements for a New Theory.. e eentnes 157

7.1.3. Rescarch IMplicationS ... ciimeierenieninnenec et 159

7.1.4. Practical IMpHCatioNS ..cccvveevccmnmiiniisecrserncietsse et s esnrnnceiees 161

7.2, CONIIDULIONS...coiviireeieteeeercrerrceiesieneiste st e e bt b 162

720, TREOIY cecterereeeeeerererecreseessscerernsse e eras s st bt ee s e s s s ae st nanesaens 162

7.2.2. MeCthodOlOgY .comeeeerereeeeriercniitenen ettt 163

7.2.3. PLACLICE toeeeeeeeiceeeieerreesreestnesneessnsseeaessnbsssnssssnasssassanassasssnassnnannesens 164

7.3, LIMIALIONS cueveeereeceeceeierereaersestssesesestesasse e s s e st st s et st esesmna s 164

7.4. Future Research DireClions. .o e sranneesenie cnecncnnes 166

LIST OF REFERENCES ...ttt rrecerecsinsiie e sae s seie st sn s sne s 168
APPENDICES .ottt ettt reee e seerrser e v ases s et sese e s ssa s b ra b b e s esesbuta b s sbss s s abassseasenees 178
VITA rivreresrereresissastessessassasesssenssassestastestassessasarsassssstssiosssssasmartssanreshsssiostassssssosssnssaseas 196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE PAGE
1. A Framework of CommuUunity TYPCS ..ovee ettt svnsssanens 47
2. A Framework of Communities and Teamsue.eeirriiiiioiiimeni e, 49
3. COMMUAILY SUDGTOUPS «..ceveeeeieerererrenessescmmnsssniessrass st tece st ssmsnessssesasasasasassrsasnsasanes 63
4. S0Cial NetWOTK CONSITUCES 1.vevieieieeeireeereeearerressenasrannesseasssassnessrsse st et s te st e snesreeneans 66
5. Community SUccess Variablesccccerieriniinmressiinssressc et 84
6. CONLIO! VATIADIES c.eviiiieieciiitecintreie st srrestesee b stessasne e e st sab st et sr e anee 86
7. Social Network Variables ... e ercecctesoninirse s ssessiesn e s ss e s e e naeanes 94
8. Project Selection CIILErIa . v v ieiviecresssr ettt 100
0. Profile Statistics for Sampled Project COMMUNITIES. .ccomeermeiineeninr e 104
10. Normality Tests of Dependent Variables... .o 107
11. Rotated Component Loadings for Accepted Dependent Variables .oooeeeereecrneencnnne 110
12. Descriptive Statistics of Subgroups and Research Variables ..o, 111
13. Correlation Matrix of Research Variablesovoienivonninne 114
14. Summary of Regressions on Group Density ..o e 123
15. Summary of Regressions on Core DEnsity ... 124
16. Summary of Regressions on Peripheral Two-Mode Densitye.cvcvreemincneceionanns 125
17. Summary of Regressions on Core Membership Degree.. ..o 126
i8. Summary of Regressions on Administrator Membership Degree ..., 127
19. Summary of Regressions on Administrator Class Centralityccocecereriicnnicannn. 128
20. Summary of Test Results for Closure Hypotheseso.ovvvccivoiniininiinninnn 130
21. Summary of Test Resulits for Bridging Hypotheses ... 135

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22. Summary of Test Results for Leader Centrality Hypotheses...oovveovimniiiinnnnen, 138

D-1. Software Downloads Regressed on Group Density ... e 189
D-2. Page Views Regressed on Group Density «o.ccoceeneeniisnni i 190
D-3. Software Releases Regressed on Core DENSILY .oveeeeveeneeecnnonisciennninnnn 191
D-4. Page Views Regressed on Core DEnsity i 192
D-5. Code Commits Regressed on Administrator Membership Degree.....ovvcveennnen.. 193
D-6. Software Releases Regressed on Administrator Class Centrality oo 194
D-7. Page Views Regressed on Administrator Class Centrality ..o 195

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

FIGURE PAGE
1. Conceplual FIaMEWOTK i . u et resssessesse st ns 10
2. A Theory of Social Capital ..o 19
3. Hackman’s Normative Model of Group Effectiveness. ... 41
4. Conceptual Research Model ... 58
5. Development Framework for Social Network Constructs.... i 61
6. Social Network Model of Community SUCCESS cuuiiiviriiniiaieirinnienscnrcnntssiteiinsaiens 71
7. Sample Frame Development Workflow ... 99
8. Data Compilation WOrKFOW.....ccvviriiiniininisecee i 102
A-1. SourceForge Project Home Page SUMmMary SCreen.. v, 179
A-2. SourceForge Project Details and PUblic Areas.....coveemvcimiini 180
A-3. SourceForge Project Member Pageovveinincnnenniienii, {81
A-4. SourccForge Project Forum Page Topic LiSUNE .o 182
A-5. SourccForge Project Forum Page Discussion TeXl .. 183
A-6. SourceForge Project Statistics Page ettt 184

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

Communities of volunteer individuals and organizations are collaborating to
create and use public domain computer programs, commonly known as “open source
software.” In recent years, these communities have had a surprisingly powerful impact.
For example, 78 million web server sites now utilize the software products which were
created and freely distributed by the Apache open source community. Apache holds a
50% “market share” of this huge software base compared with a 35% share held by
Microsoft. What is even more surprising is that the Apache volunteers have maintained a
substantial market lead over Microsoft since 1995.

industry players, such as IBM, HP, Computer Associates, Novell, Sun, and
Netscape, view the open source movement as a strategic opportunity, and are dedicating
significant resources to open source projects (Bessen 2005) and/or releasing their
previously closed source software, such as Eclipse, Open Office, and Mozilla, in an
attempt to create open source projects (West and O’Mahony 2005). Red Hat, a
distributor of Linux software, has a market capitalization value of $2 billion. Over a
recent eighteen-month period, 50 new ventures with an open source business model have
attracted some $400 million in venture capital (Lacey 2005). Governments and NGOs
around the world, including both industrial and developing countries, are mandating the
purchase of open source software by their agencies and are encouraging the development
of such software for public purposes (Evans and Reddy 2003, Weber 2003). In

particular, the Chinese government is supporting open source software by funding the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development of a Chinese version of Linux, and by promoting the use of open source as
part of an ongoing program to combat software piracy (Trombly 2005).

In summary, open source software project communities have created much of the
software infrastructure of the internet, they are changing the structure of the computer
industry, they have spawned new entrepreneurial opportunities, and their activities are
increasingly viewed by governments as an important policy issue. Most organizations
and individuals can now benefit directly from the computer programs being produced by
these communities. Yet, all of this has been accomplished by non-paid volunteers and/or
by the employees of corporations who do not directly profit from their employees’
activities. These open source developers operate from remote locations around the globe,
they choose their own tasks, and they work at their own pace. The result has been
described as a kind of “bazaar” of activity (Raymond 1999).

How can this be? Traditional economic theory would predict that open source
projects should not even survive, let alone thrive. Efforts to explain this intriguing
phenomenon have referred to open source as a new form of organization, a new model
for production, and a new kind of innovation. Benkler (2002, 2006) considers open
source to be part of a more generalized set of web-based collective activities which are
characterized by a governance structure that is neither hierarchical nor market-directed,
but rather is a “bottom-up” communal type in which participation is open and voluntary
and is not motivated by economic incentive. Benkler (2002) iefers to this phenomenon
as “commons-based peer-production.” Benkler (2002) and Lessig (2001) argue that these
kinds of open and web-based forms of development, production, and innovation offer

certain advantages over market-based and hierarchical forms. They suggest that these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

advantages include access to a broader pool of talent, more efficient matching of
contributors to tasks, improved motivation of contributors, and increasing returns
(network externalities) associated with contributor and user participation.

Prior to the introduction of the internet, these “web-based initiatives” were
constrained by high transaction costs associated with communication, coordination, and
transportation. The internet and worldwide web are now drastically lowering these costs,
thereby enabling new forms of collective action and collaboration. In essence, this
phenomenon is now possible because thousands of individuals throughout the world can
work together in developing a single product, as long as that product can be digitized and
made available on the web.

What exactly is open source software? In essence, it is computer software in
which the source code is revealed to the public. This is in contrast to proprietary
software, in which the source code is hidden from the public (e.g. as in the case of most
Microsoft products). The physical significance of revealing the source code is that it
enables anyone with the necessary skills to copy, modify, use, and/or distribute the
software. However, the application of this simple idea has broad and significant
implications with regards to collective production methods, innovation, property rights,
virtual cemmunities, and even culture.

Similar to communities of practice (Wenger 1998, Brown and Duguid 2000),
open source software communities seif-organize around a shared interest in the practice
of producing and using certain software applications. However, unlike communities of
practice in which members are often co-located and familiar with each other, these open

source communities are globally-distributed and comprised of largely unaffiliated

LI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

individuals. While these groups are referred (o in this study as “communities,” they often
do not even resemble the common notion of a community. In effect, they are more like
“communities of strangers.”

While most of the public attention has been directed to large efforts such as Linux
and Apache, the future of open source sofiware may lic in the more than 100,000 open
source projects that have already been registered on the host site SourccForge.net.
However, only a small fraction of these projects have achieved clear success. A study of
SourceForge projects by Capiluppi et. al. (2003) concluded that most of the projects
hosted at the site in 2003 were dead, with only a small fraction showing any activity over
a six-month period. A review of SourceForge by the author showed that 87 projects have
been registered in the domain of genealogy, and yet only 4 or 5 of these appear to have
achieved any significant level of success. Why did these particular projects succeed,
while the others did not?

Efforts to explain the workings of open source software projects have taken
various perspectives, including technological, psychological, eccological, and
organizational. For example, a modular software design is considered to be a critical
technological feature (MacCormack et. al. 2006). In terms of psychological factors,
much research has been conducted into understanding the motivation of contributors who
spend time and effort on open source projects even though many of them receive no
direct financial compensation (Raymond 1999; von Hippel and von Krogh 2003; Lemer
and Tirole 2002; Lakhani et. al. 2002). From an ecological perspective, a survival of the
fittest argument has been proposed based on a limited set of niche opportunities for

particular types of software. As organizational entities, open source sofiware projects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been studied in terms of the types of online groups or communities that form to
support and enact the projects.

While its roots reach back into the 1960’s, the current open source software
movement only began in the 1980s, with the most rapid growth occurring within the last
10 years. As would be expected with a relatively new phenomenon, most of the open
source research has been exploratory, descriptive and/or anecdotal. Explanatory work
has been mostly limited to studies of developer motivational factors, with very little
quantilative research involving the correlates of project success. In fact, the very
definition of “success” of an open source software project has been problematic. Based
on the current state of research, we are still unable to adequately address the question:

“Why do some open source software projects succeed while others fail?"
y proj

1.1. Rescarch Approach

Part of the difficulty in addressing the mystery of success is the novelty of the
open source phenomenon and the fact that research is still at an early stage. However,
another part of the difficulty is that open source projects are dynamic and complex
entities, with many influencing factors and emergent properties that are difficult to define
and measure. In some respects, a new open source software project is similar to a start-
up new venture, in terms of defining the goal/mission, acquiring human and physical
resources, coordinating work efforts, and competing with other projects and
organizations.

An appropriate research perspective is needed which can adequately represent

these complex and dynamic entities and which can then address their conditions of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

success. A social network structural perspective is chosen in reference to that purpose.
Studies of social network structure have been conducted since the 1930°s in the social
sciences, and, more recently, are gaining prominence in many fields, ranging from
corporate strategy to network-based physics. A social network perspective focuses on
the nature and structure of the relationships between social entities, rather than the
attributes of the entities themselves.

The social structuralist perspective is useful because it provides a unifying
framework for a wide range of interdisciplinary concepts, and it aiso allows for the
precise definition of constructs and the quantitative investigation of success factors. In
addition, very little social network research has been conducted on open source software
project communities and the potential insight to be gained from such an approach is
expected to be significant. In this regard, Healy and Schussman (2003) suggest that:

. researchers should attend more closely to the social structure of the open
source software community. The process of open source software development
is embedded in particular structural and organizational contexts that theorists of
open source software have so far paid little attention to. [nvestigating them
offers a promising route for an original sociological perspective on this exciting
phenomenon.

A social network perspective is taken, based on the assertions of social capital
theory, which is one of the most prominent of the social network theories. Also
considered are other more domain-specific network studies of the impact of social

structure on the effectiveness of tcams and work groups. The associated social network

concepts are used as a platform for synthesizing the results of theory and prior research in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a diverse set of related areas including open source software, ieams, communities, and

innovation.

1.2. Rescarch Question

The primary motivation for this research is Lo invesligate the conditions which are
associated with success in open source software project communities. Specifically, the
research is designed to apply a social network perspective towards the study of social
network structures which may be related to success. In pursuit of this goal, the following
research question is defined:

What is the relationship, if any, between the social network structure of an open
source software project community and the success of the community?

This research question defines the phenomenon of interest as being open
source software project communities, with social network structure and community

success as the primary constructs for investigation. The research definitions for

these three concepts are presented in the following section.

1.3. Definitions

In this section, three key constructs are defined which are central to the
specification of the research question, and which also help to define the scope and

approach for the overall research effort.

Open source software project community. In defining the notion of an open

source software project community, it is first necessary to define an open source software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

project. For the purposes of this research, an “open source software project” is defined as
a sofiware development project which utilizes an open source license accepted by the
Open Source Initiative (OSI 2004), and which has a unique identity and repository of
source code.

The “community,” then, consists of the population of individuals that emerges to
carry out the open source project. Specifically, this includes individuals who spend a
non-trivial amount of their time and effort on project-related activities. These individuals
are considered to be “members” of the project community (also referred (o in this
rescarch as “actors” or “participants”). While it is possible to think of all open source
developers as comprising a kind of community, the study definition is limited to the

community of individuals who are associated with a particular project.

Social network structure. For the purposes of this research, the social network
structure of an open source software project community is defined as the pattern of
interactions and relationships among and between the members of the community
(ingroup ties), and between members of the community and other individuals outside of
the community (outgroup ties). The focus, then, is on the relationships between

individuals rather than the attributes of the individuals themselves.

Community success. The construct of open source software project community
success can be defined in various ways, depending upon the perspective of the relevant
stakeholder, as well as the type of community that is involved (Crowston et. al. 2004).

Perhaps the most fundamental definition for community success is “the general level of
I g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity associated with the community. Thus, successful communities are those which
attract many participants who collectively spend a significant amount of time and effort
on communitly activities. For certain communities which create a product such as
software, another construct of success can be defined as the “output” of the community
(c.g. the quantity of softwarc produced). Finally, community success can also be
measured in terms of “impact” beyond the boundarics of the community (e.g. extent to
which software produced by a community has resulted in industry-wide changes.) For the
purposcs of this research, however, the success of an open source software project

community will be conceptualized in terms of its member activity level and its output of

software.

1.4. Dissertation Structure

In the opening chapter, the intriguing nature of the open source software
phenomenon is described along with its surprising impacts on business and society.
Some of the efforts to explain the “economic mystery” of its very existence are discussed,
although it is noted that much of this mystery seems to remain. The “success mystery” is
then described atong with the social network based research approach that is being used
to address this mystery. The primary research question was posed and key related
constructs were defined. The remainder of this dissertation is organized into the

following six chapters and follows the conceptual framework which is presented on

Figure 1.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure |
Conceptual Framework

Social Capital
Theory

Studics of Open

and Innovation

Social Network
Source, Communitics Studics

of

Tecams

Chapter 2: This chapter begins with an overview of theoretical and conceptual
foundations, involving a description of the various relevant knowledge
domains and how they relate to this particular research work. For each

domain, a review of the literature is presented with special emphasis on

Y

Constructs &
Propositions

Rescarch
Variubles

A

Hypothesis
Testing & Results

Y

Discussion of
Findings

\ 4

Implications of
Findings

_.-...-____-_--_..__...._..--_..-____._..-_.._____---..._._____--____>

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

aspects of the literature that relate to the research question.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Here, the overall research model is described. This model incorporates the
foundational theories and other research results into a conceptual model of
the rclationship belween social network structure and open source
software project community success. This is followed by a definition and
description of al! research constructs and a description and justification of

the propositions to be considered.

Chapter 4: in this chapter, the research method and study design are presented, along
with a description and formal specification of the research variables that
are used in defining the testable hypotheses in Chapter 5. Then, the
sampling strategy is presented and the procedures for extracting and
compiling archival data for the sampled projects are described, followed
by a description of the resulting project sample and the associated research

dataset.

Chapter 5: Chapter 5 includes a discussion of the analytical procedures that were
performed on the research dataset to test the hypotheses. Key data
analysis procedures included principal component analysis, regression
assumption testing, and regression analysis, including both linear and

quadratic. This is followed by a presentation of the results.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: In this chapter, the results presented in Chapter 5 are summarized in
reference to the hypotheses and prior literature. This is followed by the

presentation and analysis of a set of conjectures for explaining the results.

Chapter 7: In the last chapter, the fundamental conclusions of the research are
summarized and discussed, along with their implications for theory,
research and practice. This includes a discussion of the contributions to
research and practice, research limitations, and the directions for future

research work.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW

This chapter contains a review of literature regarding theoretical work, empirical
studies and other publications which are relevant to the dissertation. In the first section,
cach literature domain is noted and its relevance is described. In subsequent sections,
cach of these domains is reviewed including social networks, open source software,
teams and work groups, communities, and innovation. Each section focuses on aspects of
the domain that are important for this work, ending with a subscction which describes the

social network perspectives and studies that have been conducted in the domain.

2.1. Theoretical and Conceptual Foundations

Social network analysis and theories involving social structure are fundamental to
the work. The structural dimension of social capital theory and social network studies of
centrality and prominence provide the primary theoretical foundations. Studies of social
structure that have been performed in various relevant domains including open source
software, teams, communities, and innovation are considered. Social network analytical
techniques are also applied in defining and calculating social structural measures for the
purpose of operationalizing and testing the hypotheses.

Of course, the target phenomenon for this work is open source software, and the
scope of the research includes the projects which are formed to create and update the
software as well as the communities of individuals that emerge to carry out the projects.
Beyond the social network studies, the other arcas of interest regarding open source
sofiware include explanatory mechanisms, community formation and participant roles,

developer motivation, work processes, and the measures and factors of success.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The concept of “team™ has been selected as the primary reference phenomenon,
and open source software project communities are presumed to be a kind of software
development team, considering that both groups arc task-driven and that the software
product created by an open source project community may be virtually indistinguishable
from the software created by a traditional team. Key aspects of the team literature
include social structural studies of team and work group effectiveness as well as virtual or
cmergent organizations, in that open source project communities are sometimes described
as virtual organizations.

While the team is used as the primary reference concept, it is also recognized that
open source software project groups are a kind of community. Therefore, prior studies of
communities are considered, especially those involving online or virtual communities.
The connection of open source software projects with innovation is recognized and
therefore some of the key aspects of innovation research are also reviewed, especially the

literature regarding open and distributed innovation.

2.2. Social Networks

In fundamental terms, a social network is a network representation, in which the
nodes of the network are social entities (such as people or organizations), and the links of
the network are relations between the social entities (such as advice-giving or trade). The
term “social network analysis” refers to a broad set of methods and tools for coding and
analyzing social network representations. In contrast, the domain of social network
theory involves the application of network concepts and perspectives to various aspects

of social psychology, sociology, and organizational science. The basic concepts of social

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network analysis are described in the next section, followed by a review of relevant social

network theories and a discussion of network-based theories of social capital.

2.2.1. Social Network Analysis

First noted in 1934 in the “sociograms” of Moreno (1934), social network
analysis has grown into a large collection of methodologies, measurements, and tools that
can be used for the description and analysis of social networks and social structure
(Wasserman and Faust 1994, Scott 2000, Carrington et. al. 2005). The primary
mathematical foundation for social network analysis is provided by graph theory, and the
methods draw heavily on matrix algebra for coding and manipulating network data.

The basic units of analysis are the dyads and triads which represent pairs and
triples of nodes. Features of dyads that are commonly studied include reflexivity,
symmetry, and transitivity (Wasserman and Faust 1994). At the network level, the
primary types of constructs that are defined include density, centrality and centralization,
cliques and components, and positions and structural equivalence (Scott 2000). The
social network analytical method is, by definition, a multi-level method, in that the nodes
reflect data at an individual unit of analysis, the links reflect data at the relational (dyadic)
level of analysis, and the resulting measures of network structure are produced at the
group or network level of analysis.

Centrality is one of the most ubiquitous of the social network measures. It is
typically described as a “location” of an individual actor within a network which is
associated with importance or prominence (Wasserman and Faust 1994). Many

alternative ways of defining centrality have been proposed, with the most popular being

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

degree (the number of ties of the focal actor with other actors), closeness (the extent to
which the focal actor can reach other actors through “short paths™), and betweenness (the
extent to which the focal actor is located on paths which connect other actors to each
other).

A fairly recent extension of the notion of centrality has been suggested by Everett
and Borgatti (1999), in which the centrality definitions are applied to subgroups (of a
larger group or network) rather than to individual actors within a network. Questions
which could be addressed with such methods include: *how central are the women within
an organization, as opposed to the men?’ or ‘to what extent are financially-oriented
individuals central to the advice-giving networks of the firm?’

Social network analysis has 2 number of positive features with respect to its use as
an analytical tool. lts use can reveal patterns that are not discernable with other methods.
These patterns may be reflected in quantitative social network measurements or they may
be observed qualitatively in two- or three-dimensional graphical network representations.
Further, the use of social network analysis provides a quantitative method for studying
complex social phenomena such as kinship, community structure, corporate interlocks,

and elite power, whose investigation would otherwise be limited to the use of qualitative
tools.
2.2.2. Social Network Theory

Social network theories utilize a social structural perspective in which the focus of
investigation is the pattern of interactions and relationships among and between the social

entities. These theories consider the relationships between members rather than the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attributes of the members themselves, and they involve the study of the social network
structures of groups and their impact on either individual outcomes or group outcomes.

There are two primary branches of theory development in social networks. The
oldest branch is based in the social sciences, primarily in sociology, social psychology,
and organizational theory. One of the primary theoretical domains of this branch is that
of social capital (which is described in the following section). The cther main branch of
theory development is centered in the physics community. The physics studies began in
the late 1990°s based on the work of Watts (2003). In the process of studying the small-
world phenomenon, Watts discovered that a particular network structure, often identified
by a power-law distribution (also known as a Pareto or Zipf curve), is startlingly
common, and is found in a wide range of natural, social, and artificial phenomena
(Barabasi 2002, Watts 2003, Buchanan 2002). Such networks, which are often described
as “small world networks” or “scale-free networks,” are characterized by a set of
relatively large “hub nodes” which comprise 20 percent of all the nodes but which
account for 80 percent of all the links. This stream of research does not often connect
with the social science based structural research, even though many of the problems
addressed are essentially the same (Freeman 2004). Some of the structural research work
associated with open source software has been based on this physics genre.

In one respect, social network theory is a frame of reference which connects a
wide variety of organizational research including theories of resource allocation, power
differences, routine decision rules, complex cognitive constructions, sets of contractual
relationships, rational solutions to incentive problems, and complex adaptive systems

(Lomi and Pattison 2004). Lomi and Pattison (2004) argue that organizational

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

researchers in many of these areas have a common interest in understanding the role of
network ties in the evolution of various social forms and settings such as firms, markets,
industries, and states. Within these research communities, they state that network-based
models and methods are valued for their ability to address a wide variety of substantive

and analytical issues.

2.2.3. Social Capital Theory

One domain in which social network theory is perhaps the most prominent is the
area of social capital. Social capital theory provides a collective context in which
individual relationships are embedded within a network of relationships (Granovetter
1985). Social capital consists of both the network itself and the assets that may be
mobilized through the network (Bordieu 1986). Social capital can be applied at an
individual level {considering individual benefits) or at a group level (considering group
benefits). Groups can be defined as teams, communities, organizations, and even regions
(Putnam 2000) and nations (Fukuyama 1995).

Social capital theory uses an information processing paradigm (Simon 1976) to
explain how social network structure affects social outcomes at the individual level and at
the group level. Social ties are viewed as conduits for the flow of information,
knowledge or other resources. Lin (2001) argues that social networks are the foundation
of social capital. As noted on Figure 2, his theory of social capital begins with the
collective assets of the network as a whole and the structural and positional
embeddedness of particular actors. These constructs are related to accessibility (extent to

which resources can be accessed) and mobilization (extent to which these resources are

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used). These constructs then resuit in returns to the individual or to the group, including

both instrumental returns and expressive returns.

Figure 2
A Theory of Social Capital
(Adapted from Lin 2001)

Collective
Asscts Instrumental
Returns
- cconomy
- tcchnology - wealth
- social/ political/ Acccssibility - power
cultural participation - reputation
- network locations
- nctwork resources
Structural &
Positional e .
. IXpressive
Embcddedness e
Mobilization Returns
- usc of contucts - physical health
- uscr of contact - mental health
resources - life satisfaction

Nahapiet and Ghoshal (1998) identify three dimensions of social capital including
cognitive, relational, and structural. The cognitive dimension includes the shared
vocabulary and narratives of the social group. The relational dimension considers the
constructs of trust, norms, and identification. However, it is the structural dimension that
is most relevant to social structural research. This dimension considers constructs of
network ties, network configuration, and appropriable organization (whereby

organizations that create value in one context may have value in another context).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Burt (2001) addresses an apparent paradox regarding the value of an open
network (with links extending outside of a social group) versus a closed network (which
is internally cohesive). He argues that both types of networks are valuable, depending
upon the context. Open or brokerage networks, which are the basis of Burt’s structural
holes theory (Burt 1992), are considered to be valuable if there is a need for accessing
resources outside of the group, where such resources tend to be non-redundant. Closed
networks, which are studied by Coleman (1988) and others, seem to be most useful when
resources are already available and the focus is on their use.

However, Burt’s notion of “brokerage” has an alternative interpretation based on
the intention of the actor in the brokering position. This type of network position can be
used to kecp the other actors isolated in order to appropriate value from them. This is
referred to as the “tertius gaudens” orientation (or “the one who benefits”). The
contrasting viewpoint is a “tertius iungens” orientation (or “the one who joins”), in which
the focal actor utilizes the brokering position to help connect the other actors to their
benefit. This alternative interpretation of the structural holes position is often referred to
as “bridging.”

2.3. Opecn Source Software

Most of the research regarding open source software has been conducted within
the last 10 years, and much of it has been descriptive and exploratory. The most
commonly used methods are qualitative except in the case of contributor motivation in
which surveys are primarily used. The main objectives of the work completed to date
have been to describe the phenomenon in general and to address the mystery regarding

how these projects can work at all.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The literature review of open source sofiware is divided into five sections. The
first section covers general descriptive literature, some of which has been written by open
source practitioners who often take the perspective of an advocate. In the next section,
the various metaphors are covered which have been used to describe the mechanisms by
which open source software projects function. The third section includes a review of
fairly extensive studies that have been performed which attempt to explain the motivation
of volunteer non-paid contributors. In the fourth, the limited studies that directly address
open source software project success factors are reviewed. In the final section, social

network studies of the open source phenomena are presented.

2.3.1. Descriptive Studies

The open source movement is characterized by self-organization, a modular
structure of goods, and a culture containing certain identifiable norms and standards, such
as notions of freely-redistributable products, strict customs regarding the rights of the
founder-leader, and contributor attribution (Raymond 1999, O’Reilly 1999, lannacci
2003). Perhaps the most fundamental and enduring aspect of open source culture is the
notion of freely available software, as originally expressed in The GNU Manifesto
(Stallman 1985). As described by Raymond:

All members agree that open source (that is, software which is freely re-

distributable and can readily be evolved and modified to fit changing needs) is a

good thing and worthy of significant and collective effort. This agreement

effectively defines membership in the culture. (Raymond 1998)

However, it must be noted that the notion of “freely available software” refers to

its accessibility and not its price. As such, even though open source software is often

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

made available free of charge, the fundamental premise of the movement is that the
software must be accessible to anyone for their use and modification, and charging a fee
for open source software is not prohibited.
Weber (2004) notes three essential features of the cuiture that are reflected in the
Open Source Definition (OSI 2004):
1. Source code must be distributed with the software or otherwise made available
for no more than the cost of distribution.

2. Anyone may redistribute the software for free, without royalties or licensing fees
to the author.

3. Anyone may modify the software or derive other software from it, and then
distribute the modified software under the same terms.

Descriptions of open source sofiware projects indicate that they are typically
initiated by an individual (or a small group) who assumes the role of founder and usually
provides (or provides access to) systems and development components, as well as
communication infrastructure. Once an initiative has been started, a maintainer
(administrator or leader) role typically emerges that continues to monitor the progress of
the project and provides certain ongoing services such as maintenance of the enablement
system (e.g., the web site) and enforcement of (or possibly adjustment to) the project
norms {Almarzouk et. al. 2005).

The development and communications infrastructure is often provided by a
hosting organization such as SourceForge (2005) or Savannah (2005), which in some
respects acls as an incubation center for new projects. SourceForge, for example,

provides a web-based host platform which includes a source code repository {version

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control system), public forum facilities, project web pages and a search engine. This host
platform also includes the rules and policies which govern the behavior of community
members. The host organization will typically provide some general policies while
individual community leaders will often provide more specific policies geared to the
needs of their particular community.

As a projcct community grows, various developers may become aware of the
project and gain sufficient interest to join the community and to assist in expanding the
code. This process may progress as other individuals start to use the project software and
then sometimes choose o participate (e.g. by reporting bugs or requesting new features).
In large well-developed projects, third party organizations such as code distributors may
become involved to package, distribute and service the software. If the project is aligned
with their strategy, sponsoring corporations may provide contributions of cash or
facilities or in-kind contributions of employees who act as developers on the project.
Non-profit foundations may be formed to assist in promotional efforts, hold any physical
assets that may be needed, manage the intellectual property of the project (under open
source licenses), and protect the developers from law suits.

The individuals that participate in open source software projects are ofien
described as comprising a community. These communities have been described as
having an onion-like structure, with a central core of highly active individuals surrounded
by other layers of progressively less active individuals. One example of this is presented
by Ye et. al. (2005) in which the central core is composed of the project leaders and core
members, with five outer layers containing active developers, peripheral developers, bug

reporters, passive uscrs, and stakeholders, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Most studies of open source software do not differentiate the various types of
projects that may have quite different characteristics. However, there appear to be
significantly different kinds of projects that warrant separate trcatment and a few studies
have addressed this issue. For example, West and O’Mahony (2005) describe mature
projects that require a kind of transformation in order to achieve their mature status:

Mature community managed projects have developed a series of major releases.

They have defined membership criteria or boundaries: contributors know whether

they are in or out of the project. Mature projects have adopted governance

mechanisms that enable representation in commercial and legal scttings. They
also have an ccology of institutions that support and/or extend their work. These
institutions may be non-profit organizations such as the Open Source

Development Lab, firms developing complementary products, or other

community projects with which they collaborate. (West and O’Mahony 2005)

Ye et. al. (2003) identify three types of projects that are suggested to have
different characteristics in terms of goals, styles of control, and patterns of evolution for
the software code and the project community. These types include:

. Exploration-oriented projects - attempt to create leading edge solutions

which involve innovative approaches.

2. Utility-oriented projects - are directed towards filling a void in
functionality.

s}

3. Services-oriented projects — are geared to maintaining stable code and
providing ongoing services to large groups of stakeholders

Another typology of projects is noted by West and O’Mahony (2005), who
distinguish between community-founded projects and spin-off projects, in which
organizations attempt to open up previously proprietary code. The authors note that spin-

off projects seem to have a different life cycle. In the start-up phase, for example, the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“secd” code base is usually large and well-established, and its introduction to a new open
source software project community often raises special technical, relational, and legal
issucs. They hypothesize that mature spin-off projects require different kinds of project
jcadership in order to address issues related to the intentions of the sponsor, assuming
that the sponsoring organization remains heavily involved. They further clarify that
spin-off projects are different from corporate-sponsored projects, in which corporations
supply various types of support but do not become directly involved in the governance of
the project.

Other types of projects may involve those which are dominated by paid
individuals working for sponsoring corporations, as opposed to those which arc
dominated by non-paid volunteers. In terms of software type, Raymond (1999) has
suggested that open source software projects may have different characteristics
depending upon the type of soflwarc invoived, where he identifies three types:
infrastructural soflware, application sofiware, and middleware.

Somewhat related to the identification of different project types, developmental
taxonomies have been proposed to identify different project growth stages that are
associated with different project characteristics. For example, SourceForge recognizes
seven categories of “development status” (the first six of which are described by Rothfuss

2002), including:

1. Planning — No code has been written. The scope of the project is still in flux.

2. Pre-alpha — Very preliminary source code has been released. The code is not
expected to compile or even run.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Alpha — The released code works at least some of the time, and begins to take
shape. Preliminary development notes may show up. Active work to expand the
feature sct of the application continues.

4, Beta — The code is feature-complete, but retains faults. These are gradually
weeded out, leading to software that is ever more reliable.

5. Production/Stable — The software is useful and reliable enough for daily use.

Changes are applied very carcfully, and the intent of changes is to increase stability,
not new functionality.

6. Mature — There is little or no new development occurring, as the software fulfills
its purpose very reliably. Changes are applied with extreme caution, if at all.

7. Inactive — There is no project activity of any kind.

The above life cycle description is somewhat idealized, and there is evidence that
many projects never move beyond the carly stages (Capiluppi et. al. 2003). These types
of projects appear lo become inactive without ever achieving any useful level of
functionality. Capiluppi et. al. (2003) suggest that this may be due to the limited supply
of open source sofiware developers in relation to the large demand for such developers
that is generated by the many new open source software project startups.

In some cases, descriptions of open source software projects have been presented
as normative or prescriptive, although the basis for most of these descriptions is limited
because they are typically based on a single case, a very small sample of projects, and/or
non-systematic studies. Some of the important social and technological features that

have been proposed (Raymond 1999, Weber 2004, Sturmer 2005) include:

e Large number of project participants
« A bias against forking a single project into multiple projects

e Evolution of cooperative norms

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» The lack of specific deadlines or task assignments
e Version releases that begin early in the project and continue on a frequent basis
» Scparate releases for stable versions versus cutting edge versions

e Toleration for many different ideas and allowing for code branches that remain
within the scope of the project

e A large and diverse group of developers and users with different skill sets

¢ Modular software design

« Sufficiently good seed code that must run and must have a compelling design
» Sufficient promotional activities designed to “get the word out”

e Application of an appropriate open source license

e Use of a well-known programming language

In terms of desirable features of the open source software project community,
Raymond (1999) has suggested that a strongly interconnected core combined with
loosely coupled collaborations in peripheral parts of the community is a necessary feature
to address the problem associated with Brooks’ Law, which states that the complexity
and communication cost of a software development project increases with the square of
the number of developers', while the amount of work accomplished increases linearly
(Brooks 1975). However, this “solution” to the problems associated with Brooks’ Law
does have its cost, in terms of redundant efforts that typically occur within the loose

collaborations at the periphery. This problem appears to be mediated, at least in some

' This gcometric cffect is noted if the software development tcam is conceptualized as a social nctwork of
developers. In this casc, if the team includes “g” developers, then the maximum number “L” of possible
links between the developers is calculated as L = g (g-1) 7 2. (Raymond 1999)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cases, by a global supply of open source software developers who may be willing to
parlicipate.

The role of the project leader(s) has also been suggested to be of critical
importance (Pavlicek 2000), and some of the important features of open source software

project leadership that have been proposed (Raymond 1999, Weber 2004) include:

e Leadership style which is not based on a power relationship

o Delegation of as much as possible

o Treating users as co-developers

e Keeping developers and users constantly stimulated and rewarded
» Listening to the beta-testers

e Having the ability to recognize good designs and incorporate them into the
project

« Having good design and coding skills as well as people and communication
skills

2.3.2. Mechanisms and Metaphors

Various metaphors have been proposed in an attempt to describe the mechanisms
involved in open source sofiware projects and to explain how they can work at all.
These metaphors have included collective actions (Benkler 2002; von Hippel and von
Krogh 2003), forms of production (Benkler 2002; Kogut and Metiu 2001), forms of
innovation (von Hippel and von Krogh 2003; von Krogh et. al. 2005), organizational
ecologies (Chengalur-Smith and Sidorova 2003), interactive social systems (Lanzara and

Morner 2003), sclf-organizing processes (Morner 2003), complex adaptive systems

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Muffato and Faldani 2003), social networks {(Gao et. al. 2003), virtual communities
(Crowston and Scozzi 2002), and political economies (Weber 2004).

The metaphors of community, innovation, and social network are discussed in
later sections. [n this section, the metaphors of collective action, organizational
ecologies, and self-organizing agent-based systems are discussed. While these metaphors
can be useful in conceptualizing the kinds of mechanisms at work in open source

software, they do not, by themselves, represent an explanation of the antecedents for

SUCCEsS.

Open source software as a collective action. Collective action theory addresses
the logic and problems associated with the production and use of public goods (Hardin
1982). Public goods are defined as goods which are sometimes nondepletable but are
always nonexcludable (Barry & Hardin 1982, Olson 1965).> Viewed from the
perspective of the consumer, public goods are nondepletable in that one individual’s
consumption does not impact another individual’s consumption — everybody can get a
copy. They are also nonexcludable in that consumption is open to every member of the
group, whether or not they have contributed to the provision of the good — everybody has
a right to a copy. Viewed from the perspective of a potential developer (contributor),
these propertics describe a type of social dilemma (Dawes 1980, Hardin 1968), whereby

individuals may not be motivated to contribute but rather may choose to wait for others to

2 For example, public television is both nondepletable and nonexcludable, while a public park is only
noncxcludable — because it is physical space, it is depletable.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make contributions, thereby leading to suboptimal resuits (involving quality, usefulness,
usability, stability, timeliness or even existence).

Open source software is clearly a public good, in that it is nondepletable (due to
its digital nature) and nonexcludable (due to the nature of open source licenses).
Therefore, open source software projects are viewed as collective actions, where the
projects must address the social dilemma and the fundamental supply problem. [t is
addressing this collective action problem that has inspired the many studies of contributor

motivation.

Open source software as an organizational ecology. When viewed as an
organizational ecology, the persistence of certain open source software projects can be
explained by using a “survival of the fittest” argument, with respect to various niches that
exist for particular types of software. Also implied by an ecological view is the existence
of a first-mover advantage.

Lanzara and Morner (2003) view open source projects as knowledge creation
efforts which operate within an ecology of agents, artifacts, rules, resources, activities,
practices, and interactions. They examine the creation and use of knowledge artifacts,
and support the application of the metaphor by identifying ecological mechanisms of
variation, selection, and stabilization that are manifested in open source projects.

Chengalur-Smith and Sidorova (2003) use a population ecology perspective, and

propose (but do not test) four related hypotheses:

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. More reliable open source projects are more likely to survive.

2. Size of the open source project will be positively related to project
reliability and hence to project survival.

B

3. Age of the open source project will be positively related to project
reliability and hence to project survival.

4. Open source projects that occupy a broad niche are less likely to survive in

the short term.

Open source software as a self-organizing agent-based system. A number of
researchers have concluded that open source software project communities are self-
organizing systems. For example, Morner (2003) uses autopoietic organization theory
(Luhman 1984), which is based on the self-organizing concept of autopoiesis (“seif-
maintenance™) to describe and analyze open source projects. She concludes that
communication connectivity and systemic memory are important stabilizing factors
because “they reduce the overall need for coordination and therefore make the self-
organization of developers easier.” Muffatto and Faldani (2003) view open source
software as a complex adaptive system in which mechanisms of self-organization result
in emergent behaviors. They identify particular features of open source projects which
correspond with the complexity-related concepts of variation, interaction, and selection.

Another group of researchers take an explicit agent-based view and create agent-
based simulation models in an attempt to understand the dynamic mechanisms involved.
Madey et. al. (2004) have created a Swarm-based simulation model with parameters
based on data collected from the SourceForge archives. In their model, they define a
project swarm (for a particular project), which is embedded in a cluster swarm (a group

of interconnected projects), which is embedded within an open source software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development swarm (representing, for example, the entire set of projects hosted by
SourceForge). Developers are represented as agents who, at each time point in the
simulation, can choose to start a new project, join an existing project, or quit an existing
project. The growth of an “artificial SourceForge” is then simulated and the results are
compared with empirical data from SourceForge. They conclude that preferential
attachment modified by a dynamic “fitness factor” provides the best fit (Barabasi 2002)
and they use this observation to conclude that open source software project communities
are self-organizing entities.

Wagstrom (2004) has created an agent-based model (Wagstrom et. al. 2005) with
parameters based on data collected from three sources: 1) the Advogato.org social
networking site, 2) web log aggregators which capture the blogs of open source
developers, and 3) mailing lists of selected open source projects. In the model,
developers are represented as agents who are seeking a particular kind of software. This
desire is represented using an NK mode! (Kauffman 1993) to represent a string of
features, and agents are able to change features at cach time point in order to achicve a
better fitness value. Agents then make decisions regarding project participation based on
the extent to which the project features fit with their desires. The resulting simulated
growth and decline curves show patterns which resemble those observed in actual

projects.

2.3.3. Developer Motivation

Studies have shown that contributors are not normally motivated by traditional

economic incentives, but rather by instrumental factors associated with fulfilling a need,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and by intrinsic factors such as enhanced reputation, expertise development (learning),
self-fulfillment, and basic fun and enjoyment (Raymond 1998, 1999, von Hippel and von
Krogh 2003, Lerner and Tirole 2002, Lakhani et. al. 2002). Raymond (1998) explains
this by characterizing the open source movement as a “gift culture,” where bencfits
accrue from the reputation for giving away one’s time, effort, and creativity. However,
he also notes that some contributors may be morc motivated by the notion of pride of
craftsmanship, which also accrues benefits in terms of reputation, but based on a different
motivational concept.

A great deal of this research has been motivated by the collective action problem
and for finding factors which explain how this problem can be overcome in active open
source software projects. It should be noted, however, that a survey by Lakhani and Wolf
(2005) shows that approximately 40 percent of open source developers are not
volunteers, but rather are paid employees of organizations which encourage or even
direct their employees to work on particular open source projects. In this context, the
collective action problem does not seem to apply and, in facl, a new avenue of research
that is developing involves studying the motivational factors of organizations that provide

such support (Bessen 2005).

2.3.4. Success Studies

While many of the studies described in the previous sections have implications
regarding factors of success, none of these studies address the question of success factors
for specific projects in a systematic way. For example, the agent-based models of Madey

et. al. (2004) and Wagstrom et. al. (2005) attempt to suggest the general mechanisms by

(O8]
(#3]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which projects grow and decline. However, these resuits arc not applicable to the success
or failure of particular projects. In terms of studies of contributor motivation, Weber
(2004) recognizes the limitation of these works: “The summary point is that individual
motivations do not make up anything like a full explanation for the success of open
source.” In this section, a few studies that directly address open source software project
success factors arc described.

A statistical analysis in April and May of 2002 by Krishnamurthy (2002) was
conducted on SourceForge projects which were categorized as being in a “mature”
development status. Descriptive statistics for these projects show that “the vast majority
were developed by a relatively small number of individuals, few of these projects
generated much discussion, projects with more developers tended to be viewed and
downloaded more often, the number of developers working on the project was correlated
with the age of the project, and a smaller percentage of participants were assigned as
project administrators in larger groups.” In this study, the implied measure of success
was the project’s status as “mature.”

In a large sample study of SourceForge projects, Healy and Schussman (2003)
take an approach similar to Krishnamurthy (2002) by generating various descriptive
statistics for active open source software projects including developers, commits,
downloads, site views, unique message authors, and messages. They observe that many
of these measures exhibit a power law distribution and that only a few projects achieve
clear success. They recognize that the work to date does not address the success

question, and they offer the following hypotheses for future research regarding success:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The more successful an open source project, the more professional its core
contributors will be.

2. Successful open source projects will tend to have core participants
mobilized in a way similar to core participants in successful social movement

organizations. (Effective project leadership seems 1o us one of the most likely
candidates for differentiating successful projects from unsuccessful ones.)

~

3. Successful open source projects will tend to have a strong hierarchical
component, at least in the ways that they manage the relationships between lead

(and core) developers and other contributors.

4. The closer a successful project is to the core of the broader open source

software community, the more hicrarchy will be found in its management style.

Thus, for instance, the social organization of kemnei hackers will be more

hierarchical than that of developers of add-on applications for the GNOME or

KDE desktop environments, because the kernel is the essence of the operating

system, whereas additional text editors or desktop calculators are much less

important. (Healy and Schussman 2003)

Stewart and Ammeter {2002) conducted an analysis of 240 open source software
projects (o investigate factors which lead to attracting user attention (“popularity”) and
developer activity (“vitality”). They examined the effect of organizational sponsorship,
target audience (developer versus end-user), license choice, and development status.
Their preliminary results indicate that vitality significantly affects popularity, and that
sponsored projects are more popular than non-sponsored projects. The surprising
preliminary conclusion was that vitality was not affected by sponsorship, development
status, or target audience.

Crowston and Scozzi (2002) conducted a multiple regression analysis of
SourceForge data from 2001 (o test success measures that might support Katzy and

Crowston’s (2000) theory of competency rallying which relates to the success of virtual

organizations. Four open source software project measures were defined which were

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

somewhat related to the four independent variables described by competency rallying
theory: 1) identification and development of individual competencics, 2) identification of
market opportunities, 3) marshaliling of competencics, and 4) management of a short-term
cooperative cffort. Three measures of success are defined: 1) interest shown by users, 2)
development status, and 3) intensity of work undertaken by developers. They find some
support for their hypotheses for two of the three success measures.
In a subsequent paper devoted to the subject of success measures, Crowston et. al.
(2004) present a range of measures that could be used to assess the success of open
source projects. They develop these measures based on a literature review, a
consideration of the nature of the open source development process, and the opinions of
open source project participants. They describe measures along the following
dimensions, based on the type of analysis that they conducted, and note that the use of a
particular set of measures is dependent upon the research purpose and the particular
stakeholder perspective of interest:
1. Review of literature
System and information quality
User satisfaction and use
Individual or organizational impacts
2. Consideration of the open source process
Project output and process
Qutcomes for project members
3. Opinions from open source project participants
User - satisfaction and involvement
Product - meets requirement, code quality, portability, availability
Process - activily, adherence to process, bug fixing, time, age
Developers - involvement, varied developers, satisfaction, enjoyment

Use — competition, number of users, downloads
Recognition — referral, attention and recognition, spin-offs, influence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a more recent effort to address open source project success, Crowston et. al.
(2005) outlined an approach for studying the work practices of open source project
groups and relating these practices to team effectiveness. In this paper, the authors utilize
the Hackman model of group cffectiveness (Hackman 1986)°, and combine it with
theories of coordination and collective mind to suggest a set of propositions for relating

work practices to team performance in open source software projects.

2.3.5. Social Network Perspectives

A limited number of studies of open source software projects and communities
have been conducted with the use of social network analysis, and of these, cven fewer
have taken a social network theoretical perspective. Most of these studies have used
social network analytical methods to describe and characterize the projects and associated
project groups, while only a very small number have used a social network perspective as
a framework for theory building.

Wwith the objective of determining what a “typical” open source software project
looks like, Hunt and Johnson (2002) studied the activity distribution of approximately
4,000 projects on the “most active list” of SourceForge in October and November of
2001, using number of downloads per week as the measure of activity. They found that
the distribution generally followed a Parcto curve. They suggest that this may result from
the winner-take-all nature of the projects.

Madey et. al. (2002) studied the social networks of 39,000 SourceForge projects

from January 2001 to March 2002. They defined a link 1o exist between two developers

* The Hackman model is illustrated on Figure 3 and discussed in scction 2.4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if those developers were both registered for the same open source project. They observed
that the number of developers on a project, number of projects served by a developer, and
cluster size (excluding the largest cluster) ail followed power law distributions. Further,
they noted that networks associated with individual projects are connected together into
clusters by a small number of “linchpin developers.” They interpret the power law
results as evidence that open source projects are self-organizing entities.

In a subsequent study of 50,000 SourceForge projects by Gao ct. al. (2003), they
define two types of nodes (bipartite graph): developer nodes and project nodes, and they
define a link to exist between a developer and a project if that developer is registered on
that project. The study was conducted over a two year period between 2001 and 2003 in
an attempt to identify dynamic patterns that exist within the overall SourceForge network
of practice. They also obscrved the power law in the degree distribution and the cluster
distribution, and they observed a clustering cocfficient of 0.7 (éompared with 0.2 for a
random network of similar size). In terms of the dynamics over the two year period of
study, they observed that the network diameter decreased from 8 to 6 and that the average
degree increased (indicating greater connectivity).

This line of research was continued by Xu, et. al. (2005). Using a 2003 data
dump from SourceForge, they again found the power law distributions in various
measures that are indicative of small-worlds networks. Based on an analysis of
diameters, they conclude that both core developers and non-core developers are important
in connecting the overall open source community, primarily due to their facilitation of

communication flow between projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wagstrom et. al. (2005) studied the structure of the overall open source
community by using a variety of data sources, including: 1) the Advogato.org social
networking site, 2) web log aggregators which capture the blogs of open source
developers, and 3) mailing lists of selected open source projects. Comparing his results
with the studies of Madey and others, Wagstrom concludes that there are more links
between projects than was originally thought, which indicates that the overall open
source community is cohesive. He further notes that the prior assumption that cliques
exist within this overall community may not be valid, in that such cliques were not found.

Crowston and Howison (2004) examined 120 project teams (communities) from
SourceForge and analyzed interactions associated with the bug reporting archives. In
particular, they measured and compared the “communication centralization” measures of
the different projects. They found a wide variation of centralization among the projects,
and further found that this variation was negatively correlated with the number of
developers and aclive users associated with the bug reporting system — i.e., the larger
projects were less centralized. They conclude that it is wrong o assume that all open
source projects are associated with a particular social structure and that the examination
of social structure offers an interesting avenue for future research. In a practice sense,
they suggest that open source project teams should spend more effort on creating social
structures which are considered to be favorable.

In summary, the works of Madey and Wagstrom are focused on the overall open

source community (across many projects), and do not address the networks associated

4 The authors differentiate “communication centralization™ from “code development centralization™, and

suggest that the *onion models™ of community structure depict the development-based measure, but not the
communication-based measure,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with particular projects. Crowston and Howison do address the social networks of
individual projects. However, none of these works are explicitly informed by theories of
social structure, but rather they are based on research associated with software
development and team cffectiveness (Crowston), or they are motivated by the desire to

parameterize agent-based models (Madey and Wagstrom).

2.4. Teams and Work Groups

This section begins with a review of relevant studies of teams and work groups
especially with regard to their effectiveness. Open source project communities are often
described as “emergent,” and the next section includes a discussion of emergent and
virtual organizations. This is followed by a discussion of social network perspectives that

have been applied to teams and work groups within an organizational context.

2.4.1. Work Group Effectiveness

Literally hundreds of studies of teams and work groups and the factors which
contribute to their effectiveness have been conducted over the past 50 years (Kozlowski
and Bell 2003). Some of the factors which have been suggested as antecedents of team
cffectiveness include “collective efficacy, group cohesion, team-level goals, and
interpersonal conflict” (Balkundi and Harrison 2006).

One prominent example of a model for group effectiveness is the Hackman

framework (Hackman 1986). As shown on Figure 3, this model relates organizational

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|84

suied

autf) uo ssoooad onysiSrouss o1eal)) «

pue [joa ysey o) ysijdwosse
01 pannbai s00111059)
|l Jo AdudIoLfIng

SAOUNOSL POLINIDIA

$9550[$5020.d 9oUPIY
ey sAeay ul SunorIo
£q dnoiF oy} 0) 20ULISISSY

oauaadxo dnoad

ap) Aq paiensna] ueyy pagsnes
210U DIE SPIIU SIDGUIIN »
pouaFusds 10 paulziiR

ST DAY 2Y) UL 1O)2FO} YoM
o) stoqwiotit jo Apjqede)y .

11 MDIADI IO DALDDD] O IS0
o) ajquidosor indino yse, «

ssanraaipaaffo duoan

A
»

sassoooad soueusogsad
moqe swuou (noagy .
dnois oy jo uontsodwo) .
¥$u) 21 JO 2AINUS .

erA sy o) uo

104 JuRdIWLOD SIDIG)UID
pue sydwoad jey) usISOp v

udisop dnoaoy

£8.1auss dno.an)
weo) o) Aq
posn sa1Sojens vauewo)d
ys oy jo ssoudpuuidosddy «
y10as sy 0 parjdde [11ys
pue oSpajmouy Jo Junowy « | v

HSeI Wwd) duYl uo Iedq
01 1YSNno.q HOJJd JO [0ADT »

ssanaayoaffo
S0 pLIdILIY $5200.8f

(9861 ULWORH Woly)

$53UAN93}J7 dnoin) JO [9POIA FANBWLION S UBLINOCH

¢ oIngig

WSKS uonRULIoJU] »
wasks uoneonpsy .

WOISAS PILAIY »

A TIOM

}se) 3u23odwod $3210) 1D
pue suoddns jey) X010 ¢

IX2U0D [PUORDZINDTI0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

context and group design to process factors which then drive the group cffectiveness
result. Mediating factors consist of group synergy effects and the material resources
required to perform the group tasks. In Hackman’s model, three dimensions of group
effectiveness are suggested: 1) task output acceptable to those who receive or review it,
2) capability of members to work together in the future is maintained or strengthened,
and 3) members’ needs are more satisfied than frustrated by the group experience.

A recent review of team effectiveness studics recognizes two dimensions of team
or group cffectiveness (Kozlowski and Bell, 2003). These are team performance and
tcam viability. Team performance is mostly aligned with instrumental functions and is
the extent to which the team achieves its objectives and produces suitable output. Team
viability is more of a social or expressive concept, which relates to the team’s cohesion
and its ability to retain its members and to continue functioning. While these two
dimensions are conceptually distinct, a recent meta-analysis has established that there is a
close connection and cross-correlation between team performance and team viability
(Balkundi and Harrison 2000).

A virtual team is a particular type of team which has been defined by Luri and
Raisinghani (2001) as a “group of people who work together although they are often
dispersed across space, time, and/or organizational boundaries.” (Luri and Raisinghani
2001) In their study of the effectiveness of virtual teams, the authors identified team
processes and the relations among team members as having the strongest impact on team
performance and member satisfaction, while the leadership style was only moderately

associated with team effectiveness.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2. Emergent Organizations

With respect to formal organizations versus emergent social structures, Brown
and Duguid (2000) comment that:

... self organization and formal organization are not simple alternatives. Nor are

they simply complementary. They live in tension with one another. Innovation is

often developed in the productive management of related tension between

emergent practice and formal process. (Brown and Duguid 2000)

Virtual organizations are sometimes viewed as emergent, and they are defined by
Malone and Davidow (1992) as being “a cooperation of independent partners who
combine their knowledge and skills to fulfill a certain goal, in the form of research or a
product.” Strader et. al. (1998) define a virtual organization as “a lemporary network of
companies that comes together quickly to exploit fast-changing opportunities.”
Mowshowitz (2002) considers virtual organizations to be a type of organizational
approach, rather than a particular organizational form. In his view, the key characteristics
of virtual organizations are:

the separation of conceptualization from execution of tasks, and the use of

objective criteria for the allocation of resources... one that allows for crafting

structures that enable management to switch at will between different options for

implementing an organization’s requirements. (Mowshowitz 2002)

Crowston and Scozzi (2002) argue that open source software project communities
arc actually virtual organizations and they support this argument by showing the
relevance of the competency rallying theory (Katzy and Crowston 2000) which relates to

the success of virtual organizations. Markus et. al. (2000) describe the concept of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

virtual organization and then use the open source project community as their canonical
example of such an organization.

Strader et. al. (1998) define the life cycle of an electronic virtual organization for
the purpose of discussing the requirements for a supportive information technology

infrastructure. The four phases of life cycle include:

1. Identification — opportunity identification and selection.

2. Formation — partner identification and sclection, and partnership formation.
3. Operation — design, marketing, financial management, manufacturing, and
distribution.

4. Termination — Operational termination and asset dispersal.

2.4.3. Social Network Perspectives

Ahuja and Carley (1999) suggest a network model for virtual organizations in
which the fit between task characteristics and network structure is an important
determinant of network performance, where “network™ refers to a virtual organization.
They use this model as a framework to study a research-based virtual organization
involving the design and development of an artificial intelligence architecture.

In a review of computational and mathematical organization theory, Carley
(1995) compares hierarchical-centralized structures (often associated with traditional
organizations) with democratic-decentralized structures (which are associated with virtual
organizations). She notes that hierarchical or centralized structures tend to exhibit lower
performance than democratic or decentralized structures. However, under certain

circumstances, hierarchical structures are more reliable. For simple tasks, decentralized

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structures perform better, while for complex tasks, hierarchies, network-forms, and
matrix-forms are superior. More democratic structures tend to learn faster and therefore
perform better in the short run, while hierarchical and centralized structures tend to
respond more slowly but more accurately to environmental changes.

In a meta-analysis of studies of the effect of social structure on team
effectiveness, Balkundi and Harrison (2006) conclude that teams with a high density of
ties within the team are more effective, and that teams that are more central within a
network of other teams are also more effective. Finally, team performance is positively
.associated with the centrality of the team leader within the team network. These results
were applicable for both instrumental ties (associated with task-oriented activities) and
for expressive ties (associated with socially-oriented activities). The authors further
assess mediating factors, and found that the structural effects on team effecliveness are
weakened as a team matures and members become more familiar with each other.

Two particular types of teams that are especially relevant to open source software
project communities include software development teams and virtual teams. In the case
of software development teams, a social network study by Yang and Tang (2004)
concluded that group cohesion was positively related with performance and that the
group structures were critical to the overall team effectiveness. While no social network
studies of virtual teams were found, a study of effectiveness of virtual teams by Luri and
Raisinghani (2001) suggests that team cohesiveness is positively related with
effectiveness, a result which is consistent with the conclusion of Balkundi and Harrison

(2006) that teams with high density are the most effective.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5. Communities

The individuals who participate in open source software projects have been
frequently described as communities. In one context, the individuals who work on a
particular project are viewed as comprising a project community. In another context, all
individuals who work on any open source project are viewed as members of the overall
open source community. Weber (2004), expands on this metaphor of community:

The open source community ... is indeed marking out a set of organizing

principles. These include criteria for entering (and leaving), leadership roles,

power relations, distributional issues, education and socialization paths, and all
the other characteristics that describe a nascent culture and community structure.

(Weber 2004)

In this section, a variety of organizational forms are discussed including
communities of practice, online communities, and networks of practice. While the
communily of practice form has been fairly well defined (Wenger 1998, Brown and
Duguid 2000), the other forms are somewhat overlapping and conflicting definitions have
been offered (Brown and Duguid 2000, Teigiand 2003). In order to better understand
the connections between these various kinds of “‘communities,” a framework is developed
as shown on Table 1.

The framework involves two dimensions: 1) the primary motivation for the
community (social-driven, practice/knowledge-driven, or task-driven), and 2) the primary
communication mode for member participation (face-to-face or clectronic / virtual /
online). The framework is consistent with the descriptions of communities of practice

offered by Wenger (1998), and with the classification of network of practice proposed by

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Brown and Duguid (2000). The definition proposed by Teigland (2003) maps to multiple

celis within the framework.

Table 1

A Framework of Community Types

Motivation of the comnumity

Face- to-fuce interaction

Electronic (virtued, online)
interaction

Social-driven

Social clubs

Onlinc (social) communitics

Practicefknowledge-driven

Communitics of practice

Networks of practice

Task-driven

Community action organizations
(c.g. Habitat for Humanity)

Open source software project
communities

Content production communitics
(c.g. Wikipedians)

2.5.1. Communitics of Practice

Huysman et. al. (2003) define communities as: “social entities whose actors share
common needs, interests, or practices: they constitute the basic unit of social experience.”
A community of practice, then, is a particular type of community in which practices are
shared. Communilies can exist to develop the expertise of their members, to take action
(solve problems), and/or to satisfy member nceds for group interaction.

Wenger views a community of practice as being both an organizational form and
a theory or mechanism of learning. The term “community of practice” was coined in
1991 by Lave and Wenger (1991) as an outgrowth of their research into “situated
learning.”

The social theory of learning which is represented by Lave and Wenger

within the context of communities of practice conflicts with traditional theories of

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learning which typically assume that learning results from teaching. In the context of
communities of practice, the authors suggest that learning results from “doing.”

Wenger defines the boundary of a community of practice as a layered construct:

. a community of practice is 2 node of mutual engagement that becomes
progressively looser at the periphery, with layers going from core membership to
extreme peripherality.” (Wenger 1998)

Multiple communities of practice can intersect in various ways, resulting in
“constellations” of communities. These intersections provide important links to the rest
of the world through boundary objects (artifacts) and/or brokers.

In a related stream of work, Brown and Duguid also definc and analyze the
features of communities of practice (Brown and Duguid 1991). Brown (1998) observes
that members of the community:

... pick up valuable ‘know-how’ ... from being on the periphery of competent

practitioners going about their business and from being able to move from the

periphery 1o the center to participate in aspects of the practice and then move back
to the periphery to observe some more.

Wenger identifies two kinds of communities — communities of practice and
communities of interest — and compares them with two kinds of teams (Table 2). In
general, the communities are viewed as “emergent” forms of organization in that they
tend to evolve or end organically and are not the result of a planned action or any specific
hierarchical governance mechanism. The boundaries of these emergent forms tend to be
fuzzy or undefined, and their purposc is based on the needs and interests of the
community. In contrast, the formal operational teams and project teams are all “planned”

forms, in that they are typically organized and planned by management. The boundaries

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of these planned forms arc normally quite clear, and their purpose is based on the needs

of the hierarchical organization in which they are embedded.

Table 2
A Framework of Communities and Teams
(Adapted from Wenger et. al 2002}

Whart's the

Who belongs?

How clear

What holds

How long do

prrpose? are the them together? they last?
boundaries?

Conununities | To create, Scll=sclection Fuzzy Passion, Zvolve and end
of Practice cxpand, and based on commitment organically

cxchange experlise or and group

knowledee passion for topic identilication
Comnuwities | To be Whoever is Fuzzy Access to Evolve and end
of Interest informed interested information orgunically
Operational To take carc Mecmbership Clcar Shared Last as long as
Teams ofan ongoing | assigned by responsibility the operation

operation or management for the operation | exists

process
Project Teams | To accomplish | Pcople with a Clear The project’s Begin and end

a specified
task

role in
accomplishing
the task

gouls and
milestones

per project
schedule

Wenger et. al. (2002) provide some guidance regarding the facilitation of

communitics of practice. In general, they suggest that communities arc not planned
organizational forms, and thercfore are not managed in the traditional sense. Rather, they
arc emergent organizational forms, and the most effective “management style” is one of
stimulation and facilitation, rather than command and control.

Based on experiences with 60 communities of practice, Gongla and Rizzuto

(2001) have defined five evolutionary stages for these types of communities:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Potential stage — the fundamental function is connection as individuals find one
another and link up.

2. Building stage — the fundamental function is the promotion of memory and
conlext as core members learn about each other, share experiences, create roles

and norms, and share a repertoire of stories.

3. Engaged stage — the fundamental function is access and learning as members
build trust and commitment to the community and begin to reach out to new
members.

4. Active stage — the fundamental function is collaboration as individuals engage
with other community members and rely on the community’s knowledge in their
work.

5. Adaplive stage — the fundamental function is innovation and gencration as the
community develops new capabilities and adapts to new environments.

2.5.2. Online Communities

There has been considerable discussion of online (or virtual) communities, and
yet there is little work which defines what an online community is and how it relates to a
community of practice. The generally accepted concept of an online community is as
shown on Table 1. When compared with a community of practice, an online community
mostly uses an electronic form of communication, while a community of practice is
primarily face-to-face. Another distinction shown on the table is that online communities
tend to be more socially driven, while communities of practice are more practice- or
knowledge-driven (although this observation is not relevant if open source software
project communities are viewed as being an online community). Little rescarch was
found which focuses on the implications of these differences.

Brown and Duguid (2000) refer to the notion of “nel communities” and view

them as being formed around textual documents:

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Net communities extend a long tradition of communities forming around
documents ... Textual communities may be as old as texts themselves. Shared
and circulating documents, it seems, have long provided interesting social glue.
By extending this concept to include both source code repositorics as well as
textua! artifacts, it could be argued that open source soflware project communitics are
online or “net” communities. However, the task-orientation of open source project
communitics would secem to differentiate them from other forms of electronically-

mediated communities.

2.5.3. Networks of Praclice

Brown and Duguid (2000) define the notion of “networks of practice” as:
“networks that link people (o others whom they may never get to know but who work on
similar practices.” They state that networks of practice are known for their reach, and
that this reach has been significantly enhanced by information and communication
technology. They rccognize Wenger’s definition of community of practice, and view
such communities as “subsections” of networks of practice.

Interpreted in terms of an open source software project community, then, the
overall network of developers who work on various projects (e.g. all developers
registered on at least one SourceForge project) can be viewed as a network of practice,
while the specific group of developers who work on a particular project can be viewed as

a task-driven (online) community.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.4. Social Network Perspectives

Structural studics of communities, in the sense of communities of practice and
related forms, are limited. Schenkel et. al. (2000) define five structural properties which
can be used to characterize communities of practice. These include:

[. Conncctedness — In a community of practice, every member is connected,

directly or indirectly, to every other member.

2. Graph-theoretic distance — Relative to organizational networks in general,

communities of practice have shorter graph-theoretic distances between all pairs
of members.

-

3. Density — Relative to organizational networks in general, communities of
practice have a greater density of ties.

4. Core/periphery structure — Communities of practice have core/periphery
structures rather than clique structures.

5. Coreness — The greater an individual’s participation in a community of

practice, the greater his or her coreness score.

Further, Schenke! et. al. (2000) propose (but do not test) a sct of relationships
between social structure of communitics of practice and knowledge sharing and
performance. These are:

e Proposition 1A: For smaller communities of practice (less than or equal to 40

members), knowledge transfer increases linearly with density.

e Proposition 1B: For larger communitics of practice (more than 40 members),
knowledge transfer increases curvilinearly with density.

e Proposition 2A: For communitics of practice solving more complex problems,
performance will increasc as the variance among members’ coreness values
decreases.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Proposition 2B: For communities of practice solving more routine problems,
performance will increase as the variance among members’ coreness values
increases.

e Proposition 3: Community participants with higher coreness scores will have
more community-specific knowledge and thus a higher level of individual
performance.

Using collective action theory as their conceptual framework, Wasko and
Teigland (2002) studied the social structure of a network of practice —a professional legal
association in the United States. They found that the pattern of contributions of
information was that of a generalized exchange network, in which direct reciprocity was
rare. They also found that a few contributors tended to provide a large portion of the
contributions, and these core contributors are vicwed by the authors as forming a “critical
mass.” They further note that membership in this critical mass group is significantly
related to occupation, expertise, the availability of local resources, and the desire to
enhance one’s reputation.

In comparing and synthesizing her prior studies, Teigland (2003) notes that there
are significant differences in the social structures of different community forms. She
notes that communities of practice are characterized by strong ties based on personal
relationship, with a high degree of connectedness and “critical mass individuals™ tied to
one another. This compares with electronic networks of practice in which individuals are
connected by weak lies based on online interaction, a high degree of connectedness is
noted, and critical mass individuals are not tied to one another.

In the physics genre, Adamic and Huberman (2000) studied the social structure of

visitors to web sites on the world wide web. (Such visitors might be viewed as online

L
(9%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communities.) They found that site popularity fit a power-law distribution, which they
note is characteristic of winner-take-all markets. Further, they developed a dynamic
theory of site popularity which attempts to explain the distribution based on the age of the

site, its mean growth rate, and the variance of its usage fluctuations.

2.6. Innovation

Open source projects have been viewed as a form of innovation. For example,

von Krogh (2003) states that

The open-source movement’s unique development practices are challenging the
traditional views of how innovation should work. ... The open-source
movement also provides important management lessons regarding the most
effective ways to structure and implement innovation.

Von Hippel and von Krogh (2003) propose that open source projects reflect a
compound “private-collective” model of innovation, in which aspects of the private
model of innovation (incentives to innovate are provided through the protection of
intellectual property rights) are combined with the collective action model (innovators
freely collaborate to produce innovation in the context of market failure).

However, the level of innovation associated with particular open source projeets
may vary considerably. Taking the project typology offered by Ye et. al. (2005), it would
seem that exploration-oriented projects might involve radical or disruptive innovation,
utility-oriented projects might involve incremental or sustaining innovation, and that
service-oriented projects might involve little innovation at all. Raymond (1999) notes
that Linus Torvalds, the founder of the Linux project, was not seeking innovation as a

major objective: "Suppose Linus Torvalds had been trying to pull off fundamental

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

innovations in operating system design during the development; does it seem at all likely
that the resulting kerne! would be as stable and successful as what we have?"

Further, the concept of innovation generally involves both the creation of new
ideas and the diffusion of those ideas. In the context of open source software projects,
the emphasis seems to be on the creation of the new idea, while the diffusion process
occurs at least partly within a broader environment than the project itself.

In the following sections, the notion of exploration versus exploitation is
discussed, followed by a review of research in open and distributed innovation. The final
section presents social network perspectives that have been applied to innovation,
particularly as they relate to the “development” side of innovation (development of

innovations in groups) as opposed to the diffusion side (adoption of the innovation).

2.6.1. Exploration versus Exploitation

In the context of organizational learning, March (1991) describes the tension
between the exploration of new possibilities and the exploitation of old certainties, and he
discusses issues regarding the allocation of resources between the two approaches. He
considers innovation to be part of the exploration activity and production to be part of the
exploitation activity. The application of this argument to open source projects seem
relevant, given that projects tend to have an innovation component and a production
component. March (1991) discusses the tradeoffs between exploration and exploitation
in terms of organizational communication and coordination. He suggests that
organizations with effective instruments of communication and coordination (tightly

coupled) are more reliable in terms of performance variance, while more loosely coupled

L
W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

organizations arc less reliable in terms of performance, but have a greater chance of
achieving an advantage over their competitors, due to their superior ability to execute

multiple independent projects.

2.6.2. Open and Distributed Innovation

The notion of open innovation has been described by Chesbrough (2003) as a new
and more effective mode! of innovation, in which individuals and organizations beyond
the boundary of the firm play a greater role in the process of innovation. New ideas may
originate from these outside entities or from internal sources. Then, the deployment of
the resulting innovations may be exccuted through in-house pathways to the market or by
utilizing outside firms for this purpose. This open model of innovation contrasts with the
traditional closed model, which focuses on internally generated ideas and in-house
pathways to the market.

Von Hippel and von Krogh (2003) argue that open source software is a
manifestation of a new “private-collective” model of innovation, and they describe this
mode! as a kind of “distributed innovation.” Based on their observation that the leaders
of open source project communities often designate who can be a member of a particular
social category (e.g. who is authorized to commit source code), the authors suggest that:
... leadership in distributed innovation might in fact be analogous to that performed by a
playing coach.”

Kogut and Metiu (2001) also describe open source softwarc as a form of

distributed innovation:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Open source sofiware development is a production model that exploits the
distributed intelligence of participants in internct communities. This model is
efficient because of two related reasons: it avoids the inefficiencics of a strong
intellcctual property regime and it implements concurrently design and testing
of software modules.

2.6.3. Social Network Perspectives

In a study of the social nctworks of individuals involved in organizational
innovation, and their behavioral orientation, Obstfeld (2005) compares the tertius iungens
(“the third who joins™) orientation associated with the notion of introducing connected
individuals and facilitating their coliaboration, with the tertius gaudens (“the third who
benefits™) orientation associated with the structural holes notion of acting as a broker
between individuals in order to extract personal benefits. He finds that participation in
innovation (development) is positively related to the tertius iungens orientation, and that

other antecedents include dense social networks and diverse social knowledge.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. RESEARCH MODELS AND PROPOSITIONS

In this chapter, the research question is addressed by first presenting a conceptual
research model and then defining a set of research constructs which expand upon the
model. The constructs are then incorporated into a social network model of success for
open source software project communities and a set of six propositions is proposed and

Jjustified.

3.1. Conceptual Rescarch Model

In consideration of the research question and the review of theoretical uind
empirical literature, a conceptual research model was formulated and is presented on
Figure 4. The model shows the relationship between social network structure and success
for open source software project communities.

Figure 4
Conceptual Research Model

Scope of Research

|]
1 1
' :
5 . .
' Commuutity Conununity Success !
! Social Network '
: Structre Output ' .
i P ‘: Conununity
[} .
i Closure l T E Impuact
! Bridging i
' Leader Centrality ' Activity ' Y
I ‘
] |
]]
[} }
1 !
1 1
I 1
] T ll
1

. .]
:| Mediating ; Market
! Factors ! Factors
I l
[} [}
I [}
| e o e e et o s = - ———h i AS = = = = = P e = = = e M - 1

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Three kinds of social network structures are included in the model: closure,
bridging, and leader centrality. The closure and bridging structures are suggested based
on the assertions of social capital theory which have been made in various social
contexts, but especially with regard to team and work group outcomes. The leader
centrality structure refers to prior social network studics regarding team leaders and the
effect of their network position on the group effectiveness of the team.

In the model, community success is conceptualized as consisting of two
dimensions: output and activity. The output dimension consists of the quantity of
software that is produced by the project community while the activity dimension reflects
the quantity of participation by community members. As noted on Figure 4, these two
dimensions arc modeled as having a reciprocal relationship. This is based on the
suggestion that the production of more software will generally lead lo greater community
participation, and that increased participation will tend to attract and motivate even more
developers to produce more software. To the extent that higher quality software will tend
to gencratc a greater level of community activity than lower quality software, it is
suggested that community activity can also be viewed as a proxy for software product
guality.

As shown on Figure 4, it is recognized that various factors may mediate the
relationship between social network structure and success. These factors include group
size, project type, project maturity, process/task structure, community norms, and
organizational environment, among others. Even though the research propositions are
limited to constructs of social network structure and success, steps are taken to control for

the effect of these mediating factors, as further discussed in Sections 4.1.2 and 4.3.2.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This model suggests that community success in terms of output and activity will
be related to the impact of the community beyond its boundaries, and that such
community impact will be affected by market factors such as user demand or
competition. Examples of community impact might include the incorporation of the
produced software into the broader internet infrastructure (e.g. Linux) or the widespread
acceptance of the software by the public (e.g. Mozilla). As discussed in Chapter 1, it is
recognized that community impact can also be considered as a dimension of success.
However, for the purposes of this research, success i< defined as consisting of the output

and activity dimensions and the consideration of community impact is beyond the scope

of the rescarch.

3.2. Research Constructs

Expanding on the social structural concepts of closure, bridging, and leader
centrality, a set of social network constructs are proposed including Group Closure, Core
Closure, Peripheral Two-Mode Closure, Core Bridging, Administrator Bridging, and
Administrator Centrality. The theories and concepts which influenced the development
of these constructs are illustrated on Figure 5. Using the area of teams and work groups
as a primary reference domain, social network theories associated with closure, bridging,
and centrality are considered in defining the six corresponding constructs. Five of these
constructs consider the role of the three key community subgroups of core developers,
peripheral developers, and project administrators. Aspects of these subgroup roles and

positions which might be relevant to community success are considered, based on the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5
Development Framework for Social Network Constructs

Group
Closure
C
ic') R Core
g A v Closurc
8]
R
E
Periphcral
7y 7 Two-Mode
Closure
Core
B
Bridging
R A d =
I
D
G
] - -
N | Administrator
G 3 v Bridging
IC:: Administrator
1:1 7Y 1 Centrality
T
R
A
L
I
1Y Corc Peripheral Administrator
Subgroup Subgroup Subgroup

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

review of the open source software literature, as well as other literatures in the arcas of
communitics and innovation. In addition to the social network constructs, this scction

also includes a discussion of the construct of Community Success.

3.2.1. Subgroups

In adapting the theories of team effectivencss to open source communities, it is
recognized that communities typically have cores and peripheries while teams generally
do not. Therefore, three key community subgroups are identified for the purpose of
devising social network constructs: core developers’, peripheral developers, and
administrators. The core and peripheral subgroups are relevant because they connect
with prior research regarding core and peripheral developers in open source software
literature (Almarzouk et. al. 2005), as well as the core-periphery concepis reflected in
general studies of communities (Wenger 1998). The administrator subgroup is relevant
because it connects with team research regarding team leaders and leader centrality
(Balkundi and Flarrison 2006) while reflecting the fact that many open source software
project have more than one administrator/leader.

As noted on Table 3, the three subgroups are defined based on their different
functional roles and/or levels of participation on the project. Core developers are
developers who are actively involved with the project and who contribute the majority of
design concepts and source code for the project software. Peripheral developers are

developers who are somewhat involved with the project and who have either contributed

5 For the purposes of this rescarch, all members of the open source software project community are referred
1o as “developers” because they all contribute in some way towards the development of the software
product. However, we recognize that many of these members are software users who have little or no
technical expertisc in the methods of software development.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source code or have posted requests or comments to the public project communication

records. By definition, a developer cannot be both a core developer and a peripheral

developer at the same time, although individuals will sometimes move from one

subgroup to another during the coursc of a project, as their role and activity level

changes.

Table 3

Community Subgroups

Subgroup

Defining criteria

Possible indicators

Core developers
(or “Coire”)

Individuals who ar. actively involved
with the project and who contribute the
majority of design concepts and source
code for the project soflware

Official designation in projcct rccords
Writes and submits source code
Makes design or coding suggestions

(or “Periphery”)

Peripheral developers

Individuals who are somewhat involved
with the project and who have either
contributed source code or huve posted
requests or comments (o Lhe public
project communication records

Submits bug reports and feature requests
Participales in project forum discussions
May write and submit source code

Administrators

Leaders of the project who take
responsibility for monitoring and
guiding the progress of the project, and
who are recognized as such by most
group members

Official designation in project records
Foundcd (he project
Designated by the project founder or
by existing administrators
Excrts access control over project source
code repositorics (is a “committer™)

Administrators are developers who lead the project. They take responsibility for

monitoring and guiding the progress of the project, and their special role is recognized by

most group members. By definition, an administrator is also a core developer. Many

projects have only one administrator, although it is not uncomimon for a project to have

multiple administrators who share in the leadership and administrative tasks (Almarzouk

et. al. 2005, Sturmer 2005, and Ye el. al. 2005). For communities which have only one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

administrator, the subgroup notion is not meaningful and the “administrator subgroup”

collapses to a single individual community member.

3.2.2. Closuwre

In social capital theory, closure is viewed as the extent to which the members of a
group arc connected through informal ties. This is typically represented by the social
network measure of “density,” which is defined as the total number of observed ties
divided by the (otal number of possible ties. In this respect, closure can be viewed as the
proportion of all possible tics that are actually connected, and a group’s social tfet\‘.'oz‘k
structure can be described as either “dense™ if the proportion is high or “sparse” if the
proportion is low.

Considering the information flow paradigm of social capital theory, closure
reflects the pattern of information flows among and between the community members. In
social capital theory, closure is generally portrayed as leading (o positive social outcomes
involving utilization of resources and group health and viability. However, some
negative cffects are sometimes noted, regarding groupthink and a reduced tendency to
associate with outsiders. In work group cffectiveness studics, closure has been generally
associated with a positive impact on effectiveness, although at least one study suggested
that the relationship is an inverted-U shape (Oh et. al. 2004).

The closure concept can be applied to the group as a whole, or it can be applied to
any particular subgroup, in which case only the ties within the subgroup are considered.
For the purposes of this research, the closure concept is extended to also consider the

connections between one subgroup and the rest of the community. For this reason, the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concept of “two-mode closure” is defined to consider only the tics between members of
one subgroup (mode #1) and the other members of the community (mode #2). With two-
mode closure, ties which are internal to cither the subgroup or internal to the group of

other community members are excluded.

Group Closure. As documented on Table 4, Group Closure is defined as the
closure of the social network of informal ties within the total project community.
Referring to social network studies of team performance, the Group Closure construct is
analogous to the construct of team closure, and with this construct the “team” is viewed
as consisting of all community members, regardless of whether they are core developers
or peripheral developers. This is justified because it is recognized that peripheral
developers contribute to the project in important ways, even though their total

contribution is normally not as great as that of the core developers.

Core Closure. Applying the notion of closure to the core subgroup, the construct
of Core Closure is defined as the closure of the social network of informal ties within the
core subgroup of the project community. This construct views the “team” as consisting
primarily of the core developers. This is an alternative view to considering the whole
project community as a team. However, it is also a reasonable proposition considering
that the core developers in an open source project are the most active and make the
greatest total contribution to the production effort. A positive impact on the core

subgroup should result in a positive impact on the entire project community.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabic 4
Social Network Constructs

Construct

Definition

Relevant subgrowp

Group Closure

Extent (density) of informal ties considering all
possible connections between members of the
project community

Nonc

Core Closire

Extent (density) of informal ties considering only
the possible conncctions between members of the
core developer subgroup, excluding all other
possiblc ties

Core subgroup

Peripheral Two-Mode
Closire

Extent (density) of informal ties considering only
the possible connections between peripheral
subgroup members and the rest of the project
community, and excluding all other tics

Peripheral subgroup
Corc subgroup

Core Bridging

Extent of bridging tics, considering conncetions
between members of the core subgroup and
members of other project communitics

Corc subgroup

Administrator
Bridging

Extent of bridging ties, considering connections
between members of the administrator subgroup
and members ol other project communitics

Administrator subgroup

Admiinistrator
Centrality

Cenual network position ol the administrator or
administrator subgroup in rclution to the remainder
of the project community

Administrator subgroup

Peripheral Two-Mode Closure. The two-mode closure concept is used to define
the Peripheral Two-Mode Closure construct, which is the closure of the social network of
informal ties, considering only the possible ties between the peripherat subgroup and the
rest of the community®. This construct is defined based on the social capital notion of
closure, as well as the assertions of open source literature which suggest that the
involvement of peripheral members in core processes will help to fulfill their nced for

challenge and skilis development, which will lead to an increase in their identification

¢ Considering that the “rest of the community™ is equivalent to the core subgroup, this construct could just
as casily be deseribed as “Core Two-Mode Closure™,

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the project community. 1t is expected that this will result in an increase in their

participation level, thercby having a positive impact on community output and activity.

3.2.3. Bridging

Bridging is the extent to which project community members or subgroup
members are connected to members of other open source software project communities.
This is consistent with Bur(’s (1992) notion of brokerage, in the case where the brokers
have a “tertius iungens” philosophy (Obstfeld 2005) which compels them to apply their
positional advantage towards the benefit of the whole group, rather than using it primarily
for their own personal gain. In the social capital literature, bridging is generally
associated with improved access to resources and an associated increase in performance.
This result has been observed in the team performance literature as well (Balkundi and
Harrison 2006).

The bridging constructs are defined in relation to the bridging ties of core
subgroup members and administrator subgroup members (Table 4). No bridging
constructs are defined for the peripheral subgroup or the group as a whole, based on the
premise that the group will not benefit from bridging ties that are held by peripheral

developers who have a limited role in the project.

Core Bridging. The Core Bridging construct is the extensiveness of ties between
members of the core subgroup and members of other project communities (excluding

members of the focal project community). Comparing with the teams literature, this is

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analogous to the notion of team bridging or team centrality, where the core subgroup is

considered to be “the team.”

Administrator Bridging. The Administrator Bridging construct is also defined
based on a more restrictive view of “team,” in that it considers only the bridging ties of

the administrator subgroup members to be important.

3.2.4. Leader Centrality

Leader centrality is the extent to which a team leader occupies a pivotal position
within the network of information flows that are internal to the team. This central
position is often associated with a perceived level of importance or prominence for an
individual within the group (Wasserman and Faust 1994). In this context, a central
structural position is typically represented by social network concepts such as degree
centrality or betweenness centrality. Most applications of centrality involve individual
nodes, although Everett and Borgatti (1999) have defined the concept of “class
centrality,” in which the centrality concept is extended from an individual within a

network to a subgroup within a network.

Administrator Centrality. As shown on Table 4, the construct of Administrator
Centrality is defined as the centrality of the administrator or administrator subgroup with
respect to the total project community. In team literature, leader centrality is considered
to have a positive relationship with team performance. In studies of open source

projects, no works were identified which relate administrator centrality to comimunity

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

success. However, it is noted that the open source literature suggests that project
community members are motivated by a sensc of ownership in the project, and that
heavy-handed control by administrators can reduce the motivation of both corc
developers and peripheral developers. The Administrator Centrality construct is an
attempt to represent the team-related positive aspects of leader centrality with the implied

negative aspects suggested by the open source literature.

3.2.5. Community Success

Community Success for an open source software project community is defined
along the two dimensions of output and activity. The output level of a project community
is the quantity of software that is produced by the community while the activity level is
the quantity of participation by community members. These two dimensions of success
include the elements of effort (reflected in the quantity of software produced) and
performance (reflected in the acceptance of the community-market as evidenced by
activity levels such as software downloads and page views). This is consistent with the
work of Grewal, et. al. (2006) in which the authors measure “technical success” with the
number of code commils and “commercial success” with the number of software
downloads associated with the project.

This Community Success construct can be compared with the performance
dimension of the group effectiveness construct commonly used in the team literture.
Team performance is often aligned with the extent to which a team achieves its objectives
and produces suitable output. An open source software project community which

produces software that is widely downloaded and viewed can be said to have achieved its

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objectives. Therefore, the Community Success construct as defined above is generally
equivalent to group performance in feams with regard to the accomplishment of task and

group objectives.

3.3. Social Network Model and Propositions

A social network model of success for open source software project communities
is proposed as shown on Figure 6. The six social network constructs are shown on the
left side of the figure, and the community success construct is shown on the right. A total
of six propositions are derived. In the following sections, each of these propositions is
described and the associated claims are justified based on the theoretical and conceptual

foundations discussed in Chapter 2.

3.3.1. Group Closure

With respect to task performance, the design and production of software requires
a certain level of interaction among the project community. Solving problems,
integrating code contributions, and coordinating work require a certain extensiveness of
discussion. However, the tools typically used by open source software project
community members (e.g. version control systems, bug-trackers, ete.) act to reduce the
level of direct interaction that is required. Further, the typical modular architecture of
open source software projects is associated with a task design containing loosely coupled
tasks and a limited need for interacting across modules. Therefore, a certain level of

interaction is required, but only to a point.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6
Social Network Mode! of Community Success

Group
Closure

AN

Proposition 1|
Corc P

Closure
RN

Proposition 2

Peripheral
Two-Modc —_—
Closurc Proposition 3

Community Success

Core

. Proposition 4
Bridging — P

Proposition 5
Administrator

Bridging L~

Proposition 6

Administrator /
Centrality

The capacity of the project community to continue working together and to
sustain itself depends upon the creation of a certain amount of trust among community
members. One of the key positive effects that has been associated with closure is the
facilitation of trust building (Coleman 1988). However, the open source software
environment provides a relatively ¢ tong communal culture (Raymond 1999) and
therefore a high level of closure may not be necessary because the members tend to share

the strong values of the open source culture.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is “costly” to develop and maintain tics. Whilc the effort required to post a
comment to a discussion forum seems to be trivial, consideration should be given to the
time necessary to read and understand the content of previous forum posts and to start
and maintain a dialogue with other members. Further, open source software projects, as
defined in this research, involve volunteers who typically have a limited amount of time
to contribute to the project. Thus, each additional tie that is established represents a cost
to the actors involved and the group as a whole.

For the group as a whole, it is anticipated that a certain level of closure is required
as described above. However, after a certain point, additional closure becomes a burden,
it is distracting, and therefore it reduces the smooth functioning of the community.
Closure above the required level will not incur further net benefits and so, the effect of
the increasing cost of ties will be to reduce community success. Therefore, the
relationship between Group Closure and Community Success is posited to be an inverted-
U shape:

Proposition |
The Group Closure of an open source software project community has an

inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Group Closure.

3.3.2. Core Closure

The subgroup of core developers is characterized by a higher level of activity than
the peripheral developers. Most of the code for the project is created by these core
developers. As a result, their need for interaction should be considerably greater than the

needs of the group as a whole (which includes both the core and the periphery).

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the cost-of-ties effect is still important and therefore, as with Proposition 1, an
inverted-U shaped relationship is suggested:

Proposition 2

The Core Closurc of an open source softwarc project community has an

inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Core Closure.

3.3.3. Peripheral Two-Mode Closure

For peripheral developers, a greater level of two-mode closure between the
peripheral subgroup and the rest of the group should lead to a greater sense of
identification with the project, as well as feelings of satisfaction and challenge. As
Raymond (1999) notes, it is important to “listen to the beta testers.” Greater two-mode
closure should translate into increased feelings of obligation and commitment to make
contributions and to remain with the project. More connected peripheral developers are
more likely to contribute code, bug reports, and assist with the production of the project
software. These peripheral developers may be the source of new ideas and methods of
development that could improve the group processes. Further, one or more may decide,
at some point, to become core developers.

On the negative side, the cost-of-ties may become a significant factor as
peripheral two-mode closure increases. Higher levels of connectedness with the core
developers may become a distraction for these more active individuals, which may offset
the benefits of having more motivated peripheral developers. Therefore, the relation
between Peripheral Two-Mode Closure and Community Success is expected to have an

inverted-U shaped relationship:

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 3

The Peripheral Two-Mode Closure of an open source software projcct
communily has an inverted-U relationship with Community Success.
Communitly Success is maximized at a moderate level of Peripheral Two-Mode
Closure.

3.3.4. Core Bridging

There are various positive effects associated with bridging ties. The bridged
members will have access to new ideas regarding production and design methods. In
addition, these members may be able to bring in members from other projects on a one-
time basis to solve particular problems and/or provide other special kinds of support.
Bridging ties may also increase the likelihood of recruiting new project community
members from other projects, as the focal actor utilizes his or her bridging ties to

- communicate the features of the focal project to potential members from other project
communities. These effects result in additional resources which should help to improve
task performance.

Bridging ties may also allow the focal actor to become aware of certain
opportunitics or threats to the focal project. For example, the bridged actor might
identify a niche of related open source software projects which provides new
opportunities for cxpanding the scope of the project to include interoperability with these
other projects. Alternatively, the bridged actor might become aware of new or increased
“competition” from other projects. In either event, the bridged actor may then be able to
help guide the focal project through and around these environmental issues, which should

lead to sustainable project community success.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the case of bridging ties, the cost-of-ties effect is only a burden on the
individual actlor, because the ties are between that actor and the members of other project
communities (not the focal community). However it is possible that too many bridging
ties would result in a lack of time and attention given to the focal project by the bridging
actor. Again, this is only one actor and the net negative effect of this on the overall
project is expected to be minor. Therefore, the relationship between Core Bridging and
Community Success is expected to be positive:

Proposition 4

The Core Bridging extent of an open source software project community is
positively associated with Community Success.

3.3.5. Administrator Bridging
Considering the special influential position of administrators, it is possible that the
bridging ties of administrators are the most important with regard to community success.
In effect, the special position of administrators allows them to leverage the positive
impact of their bridging ties. So, although the effect of administrator bridging may be
stronger than for core bridging, a positive relationship is expected:
Proposition 5

The Administrator Bridging extent of an open source software project
community is positively associated with Community Success.

3.3.6. Administrator Centrality

For administrators, a certain level of centrality is necessary in order for them to
coordinate and integrate the work of the other developers. However, as the level of
centrality increases, the administrators face the possibility of becoming overburdened and

subject to “burn-out,” which would have significant negative effects on both task

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance and group viability. This is essentially the cost-of-ties effect observed at the
individua! level of the administrator. Pavlicek (2000) suggests that administrators should
delegate as much as possible.

With regard to effects on the other (non-administrator) community members,
again, a cerlain level of contact with administrators is valuable in that these members
need to feel welcomed and accepted into the group. At a point, however, too much
contact with the administrator subgroup can lead to a loss in the “feeling of ownership”
that is apparently so important for open source software contributors. As noted by von
Krogh (2003):

Recent work by Karim Lakhani and Eric von Hippel and by Jae Yun Moon and

Lee Sproull shows that contributors to open source software projects value a sensc

of ownership and control over the work product, something they do not

experience in programming work carried out for hire. (von Krogh 2003)

Considering that an increase in administrator centrality will have a positive effect
on success up to a certain point based on the involvement of administrators in task
performance, and that further increases in centrality may have negative impacts with
regard to excessive demands on the administrator and reduced motivation for the other
members, the relationship between Administrator Centrality and Community Success is
expected to be an inverted-U shape:

Proposition 6
The Administrator Centrality of an open source software project community has

an inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Administrator Centrality.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. RESEARCH METHODOLOGY

This chapter includes a presentation of the study design and a description of the
research setting. This is followed by a description and formal definition of the variables
which operationalize the research constructs presented in Chapter 3. Finally, the
sampling and data collection procedures are described and the resulting sample and

research dataset is presented.

4.1. Study Design
A cross-sectional study design is chosen in which data are collected from a

sample of open source software project communities. In the following sub-sections, the

unit of analysis and study population are defined and the research method is discussed.

4.1.1. Unit of Analysis

The primary unit of analysis is the open source software project community.
While it is possible to think of all open source developers as comprising a kind of
community, the study definition of *“project community” is limited to individuals
associated with a particular project. Some data are collected at the lower level of
community subgroup and even at the individual member level. However, social network
analytical methods are then used to aggregate these results to the project community

level.

4.1.2. Study Population

Considering the complex nature of open source software project communities and

the various possible influencing factors (refer to section 3.1), a particular study

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

population is defined in an attempt to control for some of these factors. [n particular, the
study population is limited to carly-stage projects in order to control for project maturity,
developer-targeted projects to control for project type and task structure, and corporate-
sponsored projects are excluded to control for community norms and organizational
environment.

Early-stage projects are identified by selecting those which have only two years of
history following their first release of executable software. This study population
definition results in a sample of projects that have similar age and developmental
characteristics. In effect, these are all “start-up” or “carly-stage” projects, which are
viewed from a commonly defined starting point, regardless of the actual start date or
current age of the project. The expected result is that the sample will be more
homogeneous and represent a more focused group of projects, which will increase the
likelihood of uncovering significant explanations of variance in the dependent variables.

With regard to developer-targeted projects, most prior studies of open source
software projects have assumed the notion that “the user is also a developer,” and have
used the concept of “user-developer.” Fowever, many projects, such as Open Office, arc
targeted to end-users. While it is recognized that such projects exist, the developer-
targeted project is accepted as the. project type of focus in order to be consistent with
prior studies and also to control for differences in project type. Therefore, end-user

targeted projects arc excluded from the study population.

Regarding community-founded projects, the salient view in most open source
software research is the volunteer nature of the projects, and most of the motivational

research has assumed this. However, it is increasingly recognized that many open source

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software contributors are paid by their companies to do the work (West and O’Mahoney
2005). It secms possible that this distinction would change the motivational factors and
the underlying dynamics of the project. Therefore, the study definition of “open source
software project” is limited to the traditional notion of a community-founded project.
Corporate-sponsored projects and spin-off projects are cxcluded from the study

population.

4.1.3. Research Method

The research method used is “analysis of existing statistics” (Babbie 2005). With
this unobtrusive method, existing statistics and other types of historical records arc the
primary source of data. One advantage of this method is that there is no impact of the
rescarcher on what is being studied. Another advantage is that data are not based on the
perceptions of the research subjects, but the residuals of actual activity. A disadvantage
is that certain reliability and validity problems are associated with this method (Webb et.
al. 2000), as discussed further in section 7.3.

The other research method that could have been chosen to test the hypotheses is
survey analysis. The analysis of cxisting statistics method was chosen for this study
primarily because of the advantages of building social network variables from existing
online discussion archives and project records. Such a method allows for a large number
of networks to be sampled. This compares with laborious survey-based methods for
creating social networks in which entire studies are typically devoted to studying one or a
small number of networks. In addition, prior research has shown that subjects’

perception of their social network is often quite different from their actual social network

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Krackhardt 1999). Calculation of social networks from archival data provides a
representation of actual communications, and not mercly perceived communications.
Thus, having the ability to capture a large sample of objectively-created social networks
isa rélatively rare opportunity with respect to the study of groups.

In collecling existing statistics, a two-year observation window is utilized. The
observation period begins with the date of first project release of executable software and
ends at a point 24 months later. Even though data are collected over a period of time, a
cross-sectional design is still utilized in that the entire two-year period is viewed as a
single observational point. The two-year length of the window was chosen to provide a
sufficiently long period for observing the formation of the relevant social networks and
(heir effects on community success, without being so long as to be confounded by
fundamental changes in (he conditions in which the project operates. Open source
software project life cycles on SourceForge are observed to range upwards of 7 or more
years, and other projects, such as Linux, continue to mature after 15 years. During the
project life cycle, various changes may occur in leadership or other conditions which
change the nature of the social network structures. Also, the nature of the project
undergoes a qualitative change as it grows substantially. Studies of the cffect of social
network structure on work group effectiveness have concluded that the intensity of the
effect is reduced as the project matures and the group gains familiarity (Balkundi and
Harrison 2006). Thus, this familiarity factor can mediate the relationship. Similar effects

may occur in open source software project communities.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2. Rescarch Setting

The rescarch setiing chosen for this study is the SourccForge hosting organization
for open source software projects. On the SourceForge hosting site, individual projects
are maintained and recognized based on a unique project name and a unique set of project
web pages. Each project has at least one registered administrator who organizes and scts
access privileges for the dedicated source code repository and public forum facilitics
which are made available by SourceForge. The project community members can be
identified based on their registration with the project and/or by their participation in
project forums.”

SourceForge is the largest and most diverse of the hosting platforms, with over
129,984 registered projects and 1,395,827 individual registered users®. Of these, 81,753
projects were registered with a valid “topic,” and of these, a total of 35,231 were in a
planning or pre-alpha stage, 39.145 were in an alpha or beta stage, 20,105 were in a
production/stable or mature stage, and 1,968 were recorded as inactive, based on self-
reported development status codes’.

Other hosting platforms such as Savannah, Freshmeat, and others could have been
sclected. Flowever, SourccForge was chosen in order to provide a uniform basis for
sample selection and data collection, which has advantages both in terms of controlling

for variations associated with the nature of the hosting platform and also in terms of

71t is recognized that individuals, sometimes referred to as “lurkess,” may view (he projeet pages and
forum without posting to the forum or registering with the project, These individuals arc not considered to
be members of the project community for the purposcs of this study.

% As of Sepicmber 21, 2006

* Amounts do not total 1o $1,753 duc to multiple codes being recorded for individual projects

Sl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logistical considerations. In effect, the choice of a single hosting organization may help

to control for differences in community norms and organizational environment.

4.2.1. Data Sources

The SourceForge organization is the source of archival data. An intensive review
of the SourccForge platform was performed to identify the availability of various data
clements and to delermine appropriate data extraction methods. Part of this review
included the reading of SourceForge procedural documents and announcements to
identify any situations or changes that might influence the integrity of the data on the site.

Data were acquired from SourceForge through two kinds of channels. One
channel involves the direct capture of data (using cut-and-paste) from existing or archival
project web sites'”. The other channel involves acquiring access to and querying research
databases which have been previously created by third parties based on data dumps from
the SourceForge archives. The two research databases which were used in this study

include the University of Notre Dame (UND) database and the Libresoft (LS) database. 1

4.2.2. Data Element Selection

Based on a review of the various SourceForge data sources, various data elements
were selected based on their availability and the extent to which they could be used in
creating research variables (o operationalize the previously defined rescarch constructs.
These variables, which are described in the following sections, were defined so as to

logically and directly correspond with the associated constructs. Because an existing

1 Selected web page screen images are contained in Appendix A.

" Deseriptions of these rescarch databases are contained in Appendices B and C.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statistics rescarch method was selected, it was also necessary to consider both the
availability and the integrity of the SourceForge data elements as these rescarch variables

were defined.

4.3. Dependent and Control Variables

In this scction, the variables which operationalize the success construct
dimensions of community output and community activity are defined and specified, along

with the control variables that are used in the regression analyses.

4.3.1. Community Success

Six variables are defined for the community success dimensions of output and
activity, all of which are calculated as the sum of the 24 monthly statistics which span the
two-year observation window (Table 5). Three of these variables correspond with the
output dimension and three correspond with the activity dimension. Each of these
variables is described in the following paragraphs. Most of the community success
variables are extracted from the UND research database, with the exception of the “code

commits”’ variables which is extracted from the LS research database.

Community output variables. The community output variables consist of “code
commits,” “software releases” and “trackers closed.” In producing software, developers
normally work with a human-readable form known as “source code.” Along with the
first release of software, a production repository of the related source code is established
and maintained on the host platform. As batches of new and/or improved source code are

written and validated, these batches are entered (or “committed”) into the source code

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repository.

In creating the LS research database, the project source code repository

records are examined and each commit is recorded along with its date. The variable

“code commits” is a count of the number of these “commits™ that are made over the two-

year observation window.

Table 5

Community Success Variables

Variable Variable Success Data Sotirce Reference
Nemne Description Dimension
Codc Number of source code | Ouput SourccForge CVS Healy and
Comimits commils rccords (LibreSoft Schussman 2003
databusc)
Software Number of software Ouput Project monthly Stewart and Ammeter
Releascs releases statistical records 2002
{UND databasc) Crowston, ct. al.
2003
Trackers Number of closed Ouput Project monthly Healy and
Opened trackers statistical records Schussman 2003,
(UND database) Crowston, ct. al.
2003
Soltwarc Number of software Activity Project monthly Healy and
Downloads downloads statistical records Schussman 2003
Page Views Number of page views | Activity Project monthly Liealy and
statistical records Schussman 2003
Trackers Number of opened Activity Project monthly Healy and
Closed trackers statistical records Schussman 2003,
(UND databasc) Crowston, ct. al.
2003

At various points in time, based on the discretion of the administrators, the current

production source code repository is “compiled” and a new release of executable

software is made. This is essentially a working version of the software which can be

used by developers or by non-technical users. Each release of this software is recorded in

the project archives, and the variable “software reicases” is a count of the number of such

releases during the two-year window.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As community members identify the need for various kinds of changes to the
software, the administrators may open a “tracker.” These trackers are essentially work
orders which specify requests from the community for development work, such as fixing
a software bug or adding a functional feature. As the development work needed for a
particular tracker is finished, the tracker is “closed.” Each closed tracker is recorded in
the project archives, and the variable “trackers closed” is a count of the number of

trackers which are closed during the two-year window.,

Community activity variables. The community activity variables consist of
“software downloads,” “page views,” and “trackers opened.” As software releases are
made by the project administrators, new software versions are made available to the
public. An individual who wishes to acquire and use this software is required to
download the executable version from the project web site. Each such download is
recorded in the project archives, and the variable “software downloads” is a count of the
number of such download actions which occur during the two-year window.

The “page views” variable is measured by the number of times that any one of the
project web pages are viewed. The project web pages include a home page, developer’s
page, and various other pages of interest to project developers and software users. The
number of views which are made to these pages are recorded in the project archives, and
the variable “page views” is a count of the number of such viewing actions which occur
during the two-year window.

Finally, the variable “trackers opened” is defined as the count of the number of

trackers which are opened during the two-year window (note “trackers closed” above).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The trackers opened variable is considered to be a measure of community activity
because it reflects requests made by the entire project community and a greater level of
downloading and page viewing should be associated with a greater level of tracker
opening. As previously described, “trackers closed” is considered to be a measure of
community output because the closing action occurs as the result of developmental work

which is completed.

4.3.2, Controls

Previous studies have identified group size as having an effect on team
effectiveness and this effect might also be expected in open source project communities.
In addition, some social network variables, such as those involving density
measurements, are sensitive to the total size of the group. Therefore, both group size and
core size avre used as controls. As noted on Table 6, “group size” and “core size” are
defined as the number of project community members and the number of core subgroup

members as of the midpoint in the two-year observation window.

Table 6
Control Variables
Variable Nanie | Variable Description | Data Source Calculation
Group Size Number of project Project Counted at mid-point
community members | membership of two-yecar
records (UND | obscervation window
databasc)
Corce Size Number of core Project Counted at mid-point
developer subgroup membership of two-year
mcmbers records (UND | obscrvation window
databasc)
Conversation Number of forum Project Aggregated over two-
Volume posts monthly yeur obscrvation
statistical window
records
86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, it is plausible that the success of the corumunity could be related to
the total volume of conversation, rather than the structure of the conversational network
itself. Therefore, an additional control variable is defined to be “conversation volume,”
which is measured as the sum of the number of forum posts over the two-year

observation window.

4.4, Social Network Variables

In this section, the networks and subgroups are defined and specified within the
SourceForge research setting. A formal system of notation is defined and specified to
include graph theoretic and sociometric notations. This notational system is used to
define and formally specify the networks,_ subgroups, and the six social network variables

which operationalize the six social network constructs described in Chapter 3.

4.4. {. Networks

The social network structural constructs defined in Chapter 3 are based on the
information flow paradigm which is a fundamental premise of social capital theory.
Therefore, an appropriate network definition for use in operationalizing these constructs
would include links which are logically connected with information flow, as in a

conversational connection or other form of communication.

Conversational nenvork. Considering the availability of data from the

SourceForge archives, a conversational network was defined based on data obtained from

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the project public forum records. Each project may have one or more public forums'? on
their SourceForge project site. Any SourceForge member can post an initial message to
the forum. Individuals who view the forum can then respond with their own posts,
resulting in a thread of discussion. While other forms of communication are recognized
and certainly exist (direct emails, instant messaging, etc.), the norms of open source
encourage the use of these transparent public forums and therefore the forum
conversations were selected as a representative source of communicative connections
between project members.

In defining the conversational network from public forum data, each node in the
network is associated with a particular member of the project community, where a project
community member is defined as an individual who has registered with the project or
who has posted a comment to a project public forum. A link is then said to exist between
two member-nodes if those two members participate in a single discussion thread on a
project public forum during the two-year observation window. Crowston and Howison
(2004) used a similar type of conversational network to study the social structural
patterns of open source software projects by extracting textual data from bug report

trackers.

Project membership network. The conversational network is adequate for
calculating social network measures associated with the closure and leader centrality

constructs because these constructs relate to conversations that occur within the project

12 public forums may be for general purposes (c.g. for “open discussion™) or they may be designated for
specific purposes (e.g. “user help™).

8§

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

community. However, the bridging constructs involve information flows that occur from
inside the project community to individuals who are not part of the focal project
community. Unfortunately, the SourceForge archives contained no public forums or
other systematic data sources which could be used to calculate appropriate conversational
measures for these external information flows. Therefore, cross-membership status was
chosen as a proxy for such information flow and an appropriate project membership
network was defined.

The defined project membership network consists of two types of nodes. One
node type is specified to be a registered member of the focal project community. The
other node type is defined to be a SourceForge project. A link between a member-node
and a project-node is recognized if that particular individual is a member of that
particular project. Therefore, the members of a focal project community will, by
definition, have a link between their member-node and the focal project. However, if an
individual is also a member of another SourceForge project, then a link is recognized
between that individual and the other project. Gao, et. al. (2003) defined a similar type of
project membership network in studying the connections between various open source
software projects hosted by SourceForge. The key assumption in using this network for
the calculation of bridging constructs is that membership in another project implies

communication with members of that other project.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2. Subgroups

All of the social network structural constructs defined in Chapter 3, except for
Group Closure, make reference to a particular subgroup' of the project community.
Therefore, it is necessary to specify how subgroup membership is determined within the
SourceForge research setting. The three subgroups of interest include core developers,
peripheral developers, and administrators.

An individual is considered to be a core developer if that individual was formally
registered with the focal project during the two-year observation window. An individual
is recognized to be a peripheral developer if that individual posted a message to a project
public forum during the two-year window (but was not formally registered with the
project). Therefore, the core developer subgroup and the peripheral developer subgroup
are mutually exclusive and exhaustive subsets of the set of members comprising the
project community. An individual is considered to be an administrator if that individual
is formally registered as an administrator with the focal project on the SourceForge
records. Because registered administrators are also registered members, the administrator

subgroup is a subset of the set of members comprising the core developer subgroup.

4.4.3. Formal Notation

In this subsection, the application of graph theory and sociometric notation to
social network analysis is briefly reviewed, followed by a discussion of the basic

concepts and notational systems that are relevant to the work. In general, the notational

% A “subgroup” is defined based on the a priori individual attributes of the subgroup members. This is in
contrast to the typical notion of “subgroup” in social network analysis, in which the subgroup is defined by

certain structural atiributes using methods such as block modeling or hierarchical clustering (Wasserman
and Faust, 1994).

%0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conventions used by Wasserman and Faust {1994) are followed. In addition, definitions
for one-mode and two-mode networks are provided as needed for this work.

Graph theory, a branch of mathematics, has been used extensively for modeling
social systems including applications in anthropology, social psychology,
communications, business, organizational research and geography (Wasserman and Faust
1994). For social network analysis, graph theory provides a useful vocabulary and a set
of primitive concepts for representing social networks. It is also associated with visual
representations which have proven to be valuable in helping to understand network
concepts.

Sociometric notation was first introduced by Moreno (1934) and is perhaps the
most widely used and practical notational system for social network analysis (Wasserman
and Faust 1994). It can be used by itself or combined with graph-theoretic notation in
describing social networks. In addition, most social network analysis software packages
use a sociometric representation and take advantage of matrix algebra for network data
manipulation and calculation of social network analytical measures. In the following
formal network representations, both graph-theoretic and sociometric notations'* are

utilized.

One-mode” network. In Chapter 2, a social network was described as a network

representation in which the nodes of the network are social entities and the links of the

" In defining the networks und graphs, we assume that there is only one relation in any given graph and
that this rclation is dichotomous and nondircctional. Consideration of multiple, valued, and/or dircctional
rclations is possible but is unnceessary for the purposes of this rescarch,

'3 A “modc” is a type of node. Refer to “two-mode network™.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network are relations between the social entities. Using graph theoretical notation, a
social network can be more formally defined as consisting of a node set, a line set and a
relation, whereby the node set includes all actors who are within (he group of interest
(e.g. the focal project community), and the line set includes all pairs of actors from the
node set for which the relation applies (e.g. members who co-participate in a discussion
thread).

An actor is denoted as “n” and the “node set” is defined as a set N which contains
a total of g actors:

N={n,ny,ng}.

A nondirectional relation is defined which may or may not exist between any two
actors, whereby an unordered actor pair for which the relation exists is denoted as line
“P> and the “line set” is defined as a set L which contains a total of L lines:

L=1{l,... 1}

Using the above graph theoretic notations, a complete specification for a
nondirectional one-mode network (graph) can now be presented, as denoted by G, where
G contains set V and set L.

A sociometric notational definition of a social network begins with the same
graph theoretic notation of a set N which contains g actors. However, instead of using
the concept of a line set L, a sociometric approach is taken to define the actor pairs
connected by a relation to be the cells of a matrix. Thus, a sociometric matrix X is

defined on a single relation over the set of g actors in which the value of the matrix cell

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xj 1s “1” if the relation exists between aclor n; and actor nj, and “0” if the relation does
not exist between actor n; and actor ;. For a nondirectional one-mode network, then, X

is a symmetrical g x g matrix and it completely specifies the network.

Two-maode network. The above concepts are now extended to define a “two-mode
network” in which two different node sets are permitted. For a two-mode network, a
mode-1 actor is denoted as “n” and a mode-2 actor as “m”, and two mutually exclusive
node sets N and M are defined to contain a total of g and h actors respectively:

N={n;,ny,0p}, M= {my, ma, ... mp}.

The two sets N and M may contain actors which are of the same type, or set N
may contain actors which are of a different type than those contained in set M. The
associated sociometric matrix X is not square, but rather is rectangular and of dimension
g x h, where each matrix row is associated with a unique actor “n” and each matrix
column is associated with a unique actor “m”. One special kind of two-mode network is
an “affiliation network” in which N contains a set of actors and M contains a set of events
or organizational entities, and the relation is defined by the affiliation of the actors with

the cvent-organizations.

4.4.4. Formal Specification

As shown on Table 7, cach social network structural construct defined in Chapter

3 is operationalized with a particular social network variable. The table indicates the

construct name, variable name, data source, and reference in the social network analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

literature. Using the notational system defined in the previous subsection, definitions are
first presented for the social network measures of “density,” “nodal degree,” “mean nodal
degree,” and “standardized actor degree centrality.” These definitions are then used in

defining the formal specification for cach of the six social network variables below.

Tablc 7
Social Network Variables
Construct Variable Name BData Source Social Network Analysis
Name Reference
Group Group density Public forums Wasserman and Faust 1994
Closure
Core Core density Public forums, Wasserman and Faust '™ o
Closure Project membership
records]
Peripheral Peripheral two- Public forums, Borgatti, ct. al. 1998
Two-Mode mode density Project membership Wasserman and Faust 1994
Closure records
Core Core SourcclForge Wasscrman and Faust 1994
Bridging membership membership records,
degree Project membership
records
Administrator | Administrator SourceForge Wasserman and Faust 1994
Bridging membership membership records,
degrec Project membership
records
Administrator | Administrator Public forums, Everett and Borgatii 1999
Centrality class centrality Project membership
records

Density. The “density” of a graph is the actual number of lines in a graph as a
proportion of the total possible number of lines in the graph. Denoting density as A, the
calculation for density is specified by the formula:

A=2L/ glg-1).

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nodal degree. The “nodal degree” of a node nj, denoted by d(n;), is the number of
lines that are incident with the node n; (Wasserman and Faust 1994). A node is incident
with a line if that node is one of the unordered pair of nodes which defines the line
(Wasserman and Faust 1994). Using sociometric notation, nodal degree is defined for a

one-mode network as:

d(n) = 2anj X = Xani Xij

The nodal degree for the mode-1 actors in an affiliation network is defined as:

d() = Yanj X

Mean nodal degree. The “mean nodal degree” of a graph, denoted by d, is the
average nodal degree for all nodes in the network. Applied to the actors in an affiliation

network, mean nodal degree is:

d= Ddrom i=1 og d(m)/g=2L /g.

Standardized actor degree centrality. The “slandardized actor degree centrality”
of a node n;, denoted by C'p (nyj), is defined as:

C's () =d(m) / (g~1). (Wasserman and Faust 1994)

The general social network measures defined above arc now used in defining the

specific social network variables to be used in this research.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group density. The “group density” (GD) is the density of the “total conversation
network,” which is a one-mode network where actors are members of the focal project

community and the relation is forum conversation.

Core density. The “core density” (CD) is the density of the “core conversation

network,” which is a one-mode network where the actors are members of the core

6

subgroup of the focal project community and the relation is forum conversation'

Periplwml two-mode density. The “peripheral two-mode density” (PTD) is the
density of the “periphery-core conversation network,” which is a two-mode network
where the mode-| actors are members of the peripheral subgroup, the mode-2 actors are
members of the core subgroup, and the relation is forum conversation which is only
defined for actor pairs containing onc core actor and one peripheral actor. Centralization
of the total conversation network was considered as a candidate for operationalizing the
Peripheral Two-Mode Closure construct. However, peripheral two-mode density was
chosen instead because it takes advantage of the explicit definition of the core and
peripheral subgroups, while centralization implicitly defines a core-periphery structure

using network propertics.

Core membership degree. The “core membership degree” (CMD) is the mean
nodal degrec (defined for an affiliation network) for all actors in the “corc project

membership network,” which is an affiliation network where the actors are core subgroup

' “This is a node-generated subgraph of the total conversation network graph {Wasserman and Faust 1994).

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

members of the focal project community, the events arc SourceForge projects, and the
relation is project membership. Class centrality measures (Everett and Borgalti, 1999)
could also have been used to operationalize the bridging constructs. However, the
decision was made not to process the entire SourceForge membership network and
therefore the average degree measure was selected because it only requires the collection

of project membership data for the focal project actors.

Administrator membership degree. The “administrator membership degree”
(AMD) is the mean nodal degree (defined for an affiliation network) for all actors in the
“administrator project membership network”™, which is an affiliation network where the
actors are administrator subgroup members of the focal project community, the cvents are

SourceForge projects, and the relation is project membership.

Administrator class centrality. The “administrator class centrality” (ACC) is the
standardized actor degree centrality of the super-node in the *“administrator-other
conversation network'’” which is a special type of two-mode network (Everett and
Borgatti 1999) where the administrator subgroup members are represented as a single
mode-1 “super-actor,” the mode-2 actors are the other members of the focal project
community, and the relation is forum conversation which is only defined for actor pairs

containing the single supcr-actor and a mode-2 actor'®. Degree centrality ‘was chosen

7 If the super-node contains only onc actor, then administrator class centrality is cquivalent to standardized
nodal degree centrality for the one actor.

"8 In this definition, the effect of the mode-1 “super-actor” is that tics from a singlc mode-2 actor to
multiple members of the administrator subgroup are counted only once,

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

over other possible centrality measures such as closeness or betweenness because it is a

well-tested measure and there is no compelling reason to make other choices.

4.5. Sampling and Data Collection

In this section, the overall sampling and data collection process is described. This
process involves a serics of data extraction, screening, and compilation procedures which
were uscd Lo create a sample frame. This frame is then screened for conformance with
study population, data availability and data integrity criteria. The screened sample frame
is then used for selecting a sample of projects for which the appropriate data elements are
extracted and research variables are computed, resulting in a research dataset to be used

in the analysis phase (described in Chapter 5).

4.5.1. Sample Frame

The sampling strategy was to use the UND database to select either a probability
sample or a complete sample (Babbie 2005). The probability sampling method is close to
random sampling when the sample frame contains no systematic bias (Babbic 2005). The
target sample size is 200 project communities.

As noted on Figure 7, an initial sample frame was created by querying the UND
database for January 2006. This month was chosen because it was the most recent month
for which data was also available from the LS database. The query script includes a
selection for projects which conform to the study population definitions for target
audience and project maturity (Table 8). This query also extracted certain data, such as

open source license used, which were useful for profiling the selected sample. The initial

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sample frame was recorded on the Initial Sample Frame Worksheet, and it contained 934

project communities.

Figure 7
Sample Frame Development Workflow

Query to create
sample frame &
randomize

v

Initial Sample

Frame
Worksheet
/_‘_—————‘\ \/
~~——] Screen sample
UND Datubase g frame
____h____‘_—/
Sourceforge.net
~_
- Query to create
project [D# list
l A4

Reduced
Sample Frame

List of projects

and project ID# Worksheet

The initial sample frame was randomized in preparation for the probability

sampling procedures included in the data compilation process. The Initial Sample Frame

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Worksheet was sorted alphanumerically by project name, and this sorted list was used to
apply a systematic sample with a random start {Babbie 2005). With this approach, an
initial position is randomly chosen within the list and every nth project after that starting

point is selected for possible inclusion in the sample.

Table 8
Project Selection Criteria
Criteria Category Test Criteria (“Reject if...7) Application Step
Study Population Evidence is found of corporate ownership or sponsorship Screening
Project type is not developer oriented Frame Query
First releasc date is [ess than 2 years prior to query date Frame Query
Only onc core member is found Compilation
Data Availability | Administrators allow anonymous forum postings Screening
Public forums contain less than 50 posts during 2-year window | Screening
Libresoft Projcct ID# not available Screening
All commit values are zero Compilation
Duata Integrity Evidence is found of ambiguity in date of first software release | Screening
Evidence if found of datu corruption in monthly statistics Screening

This initial frame is then screened for compliance with additional study
population criteria, and is subjected to various tests for data availability and data integrity
(Table 8). This resulted in a reduced sample frame which was recorded on the Reduced
Sample Frame Worksheet, and it contained 257 project communities. The screening
procedures were performed by the author and reliability was verified by a third party.
The randomized and reduced sample frame was then passed to the data compilation

process, which is described in the next sub-section.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2. Data Compilation

In compiling the extracted data and computing the research variable values,
Microsoft Excel was used for data manipulation and UCINET social network analysis
software was used for the manipulation of network data and the calculation of social
network measures. In the process, Microsoft Access was used to build a secondary
database which contains the public forum data extracted from the UND database. The
Access scripts to create and use this database were created by a third party and validated
by the author using independent compilation methods. All other query scripts were
created and validated by the author.

As noted on Figure 8, the compilation process begins with the randomized
Reduced Sample Frame Worksheet (from Figure 7). The first project is selected at
random from this worksheet and appropriate data items are extracted and compiled onto a
Weekly Data Worksheet. This compilation process was performed by the author as well
as by a third party who was closely supervised by the author. The results were checked
by the author and/or by another third party for accuracy and compliance with compilation
procedures. Cases for which errors were found were returned for reworking. Other cases
for which no errors were found were entered into the final sample on the Data Analysis
Worksheet. Another case was selected from the Reduced Sample Frame Worksheet and
the process was repeated.

This process was to continue until either a total of 200 cases were included in the
selected sample or the reduced sample frame was exhausted. Based on the 257 cases in
the reduced sample frame and the application of additional study population and data

availability tests (Table 8), the sample frame was exhausted, resulting in a complete

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sample consisting of 160 projects. The associated Data Analysis Worksheet represented

the research dataset to be used for analysis.

N
~

Sourccforge.net

U

i

LS Databasc

Figure 8
Data Compilation Workflow

Reduced
Sample Frame
Worksheet

N

Ty

UND Databasc

N

Process is

complete

\ 4

Build Public
Forum Database

v

/———\
x_i__/

PF Databasc

N~N——

Yes
n=200 or

list is
exhausted?

No

Sclect next

project

l

Extract and
compile data
clements

Y

Weckly Data
Workshect

l Yes

Enter into
selected sample

'

Data Analysis
Workshect

No

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3. Sample Profile

Profile statistics for the selected sample are shown on Table 9. All statistics
shown on the table were extracted at or near the midpoint of the two-year observation
windows for each project. The year of first software release was spread fairly evenly
across the sample, ranging from the Year 2000 to the Year 2003. A number of projects
were initiated in 1998 and 1999. However, the data for these projects were corrupted or
no longer available. The most frequently self-reported status levels of development were
Beta and Production, accounting for over 70 percent of the project communities. The
most common open source license used was the GPL (GNU General Public License)
accounting for 58% of the total, followed by the LGPL (GNU Lesser General Public
License) and the BSD (Berkeley Software Distribution) license which accounted for 13%

and 9% respectively.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9
Profile Statistics for Sampled Project Communities

(n=160)

No. projects % ol total
Year of first release:
1999 1 0.6
2000 34 213
2001 45 28.1
2002 41 25.6
2003 39 244
Total 160 100.0
Project development status:
1 Planning 2 1.3
2 Pre-alpha 11 6.9
3 Alpha 27 16.9
4 Beta 57 356
5 Production 38 36.3
6 Mature 5 3.1
7 Inactive _ 0 _ 00
Total 160 100.0
Open source license used:
GPL 93 58.1
LGPL 21 13.1
BSD 15 9.4
Apuche 7 44
Other 24 _15.0
Total 160 100.0

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. DATA ANALYSIS AND RESULTS

This chapter includes a description of the preliminary analyses which included
normality testing and variable transformation, outlier assessment and removal, and factor
analysis and variable reduction. Descriptive and correlation statistics are then presented.
Finally, the regression procedures that were applicd in testing the hypotheses are
described, the hypotheses are listed, and the testing results are reported, including both

linear and quadratic analyses'”.

5.1. Preliminary Analyses

Prior to performing regression analyses, a series of preliminary statistical and
analytical procedures were applied to the research dataset associated with the sampled
project communitics. The distributions of the variables were first checked for normality
and based on the findings, the dependent variables were log transformed. Outlier tests
were then performed on the transformed variables including both univariate and
multivariate procedures. This resulted in the removal of 17 cases. In the final
preliminary step, possible reductions of the transformed dependent variables were
considered based on the appliation of a factor analysis mecthod. This step resulted in the
removal of 2 of the 6 variables, resulting in a total of 4 community success variables to be

used for hypothesis testing.

9 The statistical data analyses presented in this chapter were performed using the software package: SPSS
for Windews, Version 14.0.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1. Transformation of Variables

An initial test of normality was performed for all research variables and high
levels of skewness and non-normality were found in most of the variables. In order to
rely on the results of a linear regression test, it is important that the standardized residuals
resulting from the regression exhibit a normal distribution (Allison 1999), and a non-
normal result is often associated with non-normality of the dependent variables.
Preliminary lincar regression analyses were performed between each dependent variable
and each independent variable and, as expected, non-normality was noted in the
standardized residuals.

The dependent variables were then transformed using a natural logarithmic
function. Normality was then tested using a Kolmogorov-Smirnov statistic with a
Lilliefors significance level, based on the null hypothesis that the standardized residuals
are normally distributed. A significance level of less than .05 is taken as a rejection of
the null hypothesis and an indication that the values have a non-normal distribution
{Mertler and Vannatta 2005). The normal Q-Q plots were also inspected for cach
variable to check for a straight-line appearance which is an indication of normality
(Mertler and Vannatta 2005). The results, which are shown on Table 10, indicate that the
log transformation resulted in evidence of normality based on the Kolmogorov-Smirnov
statistics and the normal Q-Q plots for all 6 variables.

The preliminary linear regression analyses for each dependent variable and each
independent variable were repeated and it was observed that the standardized residuals
passed the Kolmogorov-Smirnov test for normality for 4 of the 6 dependent variables.

For the other 2 variables (Software Releases and Trackers Closed), the Kolmogorov-

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Smirnov statistic was marginal but the normal Q-Q plots for thesc variables showed a
reasonable straight linc appearance. Therefore, the log transformed versions of the
dependent variables were accepted for hypothesis testing. No further transformations of
the independent or control variables were considered because normality of the
standardized residuals was achicved with these variables in an untransformed state. In
conducting the regression runs for the actual hypothesis testing, the normality of the

standardized residuals was verified, as described in Section 5.3.

Table 10
Normality Tests of Dependent Variables

Unitransformed Variables Transformed Variables
Kolmogorov- Shape of Kolmogorov- Shape of
Dependent Variable Smirnov Sig. Normal Smirov Sig. Nermal
Z-Statistic Level Q-Q Plot Statistic Level | Q-0 Plot
Code Commits 3.799 .000 Nonlincar 0.569 902 Lincar
Software Releases 3.538 .000 Nonlincar 1.065 206 Lincar
Trackers Closed 4.324 .000 Nonlincar 0.950 328 Lincar
Softvare Downloads 5.193 .000 Nonlincar 0.903 389 Lincar
Page Views 4.409 .000 Nonlincar 0.938 343 Lincar
Trackers Opened 4.145 .000 Nonlincar 0.691 725 Lincur

It was noted that in cases where the dependent variable (*y”) had a zero value, the
log transformed version of the variable - In(y) - was undefined which resulted in a
missing value for In(y). Beccause the limit of In(y) is zero as “y” approaches zero, it is
rcasonable to fill in the missing values for In(y) with a “0”. Therefore, the missing values

were filled in accordance with this method.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2. Outlier Assessment

Outliers are cases which involve cxtreme values for one or more rescarch
variables. Generally, outlicrs arc defined as values which are three or more standard
deviations away from the mean value for the variable. This criterion was used for
assessing univariate outliers in which the extreme values are tested for cach variable
individually. Based on this assessment, a total of 13 cases were identified in which this
criterion was met for log transformations of the dependent and control variables.
Mahalanobis distance measures were then used to check for multivariate outliers in which
extreme values of the dependent variable are found for particular combinations of the
independent variables. Multivariate outliers are determined if a chi-square statistic for
the Mahalanobis distance is significant at p < .001 (Mertler and Vannatta 2005). An
additional 4 cascs were identified which met this criterion. Considering both univariate
and multivariate situations, a total of 17 outlier cases were eliminated, resulting in an

adjusted total of 143 cascs.

5.1.3. Reduction of Variables

A factor analysis method can be used to test for measurement overlap among the
dependent variables, and the results can be used for reducing the number of variables in
total and for grouping them into dimensions or components. As described in Section 3.1,
the research model defines success along the two dimensions of output and activity. As
described in Section 4.3.1, the logical assessment of the 6 dependent variables led to the

conclusion that Code Commiits, Software Releases, and Trackers Closed are measures of

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the output dimension and that Software Downloads, Page Views, and Trackers Opened
are measures of the activity dimension.

A factor analysis method was applied to assess the plausibility of the two-
dimension model, as well as the logical assignments of the variables to the two
dimensions. In addition, the factor analysis method was used to assess if any dependent
variables can be removed in order to reduce the level of redundancy among these
variables. The factor analysis was applied to the log transformed versions of the
dependent variables because these were selected for inclusion in the linear regression
testing. In performing the factor analysis, an exploratory approach was initially taken
(Allison 1999). A principal component analysis was applied with a varimax rotation.
Four criteria are used in determining the appropriate number of components to be
retained, including eigenvalue, variance explained, screen plot, and residuals.

On the first factor analysis run, all 6 dependent variables were analyzed with
component extraction based on eigenvalues greater than “I”. This run produced two
components with 4 variables loaded onto component #1 (Code Commits, Software
Relcases, Trackers Opened and Trackers Closed), and 2 variables onto component #2
(Software Downloads and Page Vicws) loaded. However, the variance explained was
marginal (69.9%) and the screc plot and residual criteria suggested the need for an
additional component.

A second run was then conducted in which a third component was forced. The
result of this run was that Trackers Opened and Trackers Closed loaded onto component
#1, Software Downloads and Page Views loaded onto component #2, and Code Commits

and Software Releases loaded onto component #3. With this run, the eigenvalue criterion

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was not met. In addition, the component groupings are inconsistent with the output and
activity dimensions. The Trackers Opened and Trackers Closed variables should
logically be split between the two dimensions. Apparently their excessively high
correlation (Pearson correlation = .86) which results from their logical connection (a
tracker cannot be closed unless it is first opened) causes this inconsistent result.

The Trackers Opened and Trackers Closed variables were eliminated and a third
run was performed which included the other 4 variables. An eigenvalue selection
criterion was used which resulted in two components in which Software Downloads and
Page Views loaded onto component #1 and Code Commits and Softwarc Releases loaded
onto component #2 (Table 11). All four criteria were met suggesting that no additional
components were necessary. Also, the result is logical and intuitive. Therefore, Trackers
Opened and Trackers Closed were eliminated from further consideration.

Table 11

Rotated Component Loadings for Accepted Dependent Variables
(Log Transformed Dependent Variables)

Dependent Variable Component #/ Component #2
Code Commits 170 .839
Software Releases 074 8368
Software Downloads 918 129
Page Views 923 128

5.2. Descriptive and Correlation Statistics

Descriptive statistics were gencrated for each of the research variables. As noted
on Table 12, the total size of the project communities ranged from 7 to 326 members with

an average size of about 67 members. The total project community consisted of core

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
wl
660

cer

Lee

FLO

91°1
L1l
L60
LE]

T66'LTT
016°¢E
11
et

194
6'¢
0't9

£l
6¢
979

‘as

1239
6t'C
£0°C
ol
88T
SLo

el
orF'6
10°C
L89

081°¢9[
£68°€T
i B
9£e’c

9zE
e
£L9

0
s
819

uedN

0001
0c' 1t
0TL
Wy
000!
ot

€01
1€l

Ley
8901

CLO°CFT']
01¢°cTT
6L
+65°¢H

1C
€l€

NRN

000
00'l
00°1
000’
000
900°

8’8
£9°9
000
16°¢

cIs't
8SL

0¢

(=3
M~ &

ool —

U

(Pl =w)

1T

savora o5ed 147 g u
speojumop 147 # u]
SOSE0Jo1 AT # U]
SIuwWod a£g # U

xoput [-01-0 Arenua) sse|g "unupy JOvV
syoofoad # ooaSaq diysioquapy "ulupy QY
sjooloxd # a1Saq diysoquisjy 20D IND
xopul [-0)-() Ansuaqg apoN-om], ydiiag dld
xoput |-01-0 Kusua(g 2100 AD
xoput |-01-0 Ansuo(dnoiny gn
SIS YLOMIAN [PISOS S0

SMOIA 958 Ad
speojumo(aiemjos gs
SISEO[IY 2uMJOS YS

s 9pod 3D
ISAIGULIDA SS2DING PIMLIOFS UL

smala d5ud IAT # SMOLA D5
sprojusmop I8¢ # SpEojUAOp J1EA [0S
SISLIJII .:AN # $3SLI|L dlen JOS
sHQnuod JAT # SIWWOD dpo))

18820005 {0

s1sod 1L # JWNJO A UOBLSIZAUODY AD
sroquisut # 2215 210D D
SIOqUIDW # szig dnoup §H
SSJOA0D)

sLoquIDul # slojensipupy
SR (URIE] s10do[oAdp 210D
s1aquudt # s.todojoasp rioyduiog
sdnordqug

wun

sa|qeLiEA UdIeasay pue sdunoafqng jo sausnelg aanduosa(

zlaqel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developers and peripheral developers, where the core subgroup ranged from 2 (o 21
members with an average size of 5.4 members, while the peripheral subgroup ranged
from 2 to 313 members with an average size of about 62 members. The average number
of administrators per project community was 2.0, and 49 percent of the communities had
only 1 administrator.

The average volume of public conversation in the two-year observation pertod
was 326 posts, with a range from 50 to 3,258 posts. The average values for the
community success variables (calculated over the two-year peried) included 2,336 code
commits, I1.3 software releases, about 24,000 downloads and about 165,000 page views.
Of course, the mean values for the log transformed versions of these success variables
were much lower, ranging from an average of 2.01 for the log of sofiware releases to an
average of 11.35 for the log of page views.

Four of the 6 social network structure variables are defined as “0-to-1 indexes.”
Of these, both Core Density and Administrator Class Centrality ranged from .000 to
1.000, with average values of .078 and .554 respectively. The Group Density variable
ranged from .006 1o .429 with an average value of .078, while Peripheral Two-Mode
Density ranged from .000 to .642 with an average value of .210. For Core Membership
Degree, the core subgroup members were found to be registered with an average of 2.03
projects per member, while the administrator subgroup members were registered with a
slightly higher average of 2.49 projects per member. These values included the member
link with the focal project.

It is interesting to note that the average size and range for the core subgroups was

somewhat similar to the average size and range of the teams that were investigated in the

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37 studies reviewed by Balkundi and Harrison (2006). Across the reviewed team studies,
the average team size was S, with a range of 3 to 15. This compares with the result for
open source software project core subgroups which had an average size of 5.4, and a
range of 2 to 21.

The matrix of Pearson correlation statistics for the research variables is presented
on Table 13. As might be expected, the highest correlation value was noted between
Core Membership Degree and Administrator Membership Degree (.828). High
correlations were noted between the log transforms of the two community activity
variables, Software Downloads and Page Views (.729), and between two of the density

measures, Core Density and Peripheral Two-Mode Density (.714).

5.3. Hypothesis Testing

In this section, a set of testable hypotheses is derived followed by a presentation
of the testing procedurcs that were performed.

5.3.1. Research Hypotheses

In this section, a set of four testable hypotheses is dervied for each proposition
suggested in Chapter 3. Each hypothesis represents the relevant social network structural
variable in combination with one of the four community success variables. The 24

resulting hypotheses are listed below:

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pl

SMALA 981 JO wojsuee[, 50 = Ad U
SPLOjUMO(] SIMIf0S JO wiojsuel], S0 =as w1
SOS10JOY d4ear)j0g JO wiojsuet], S0 = S Ul
SIUWO?) dpo7) Jo woysuil], 0 = D U
LRua)) ssej) 0IRNSILPY = DDV

20u5a(] diySIqUIDIA JOJENSIUHUPY = CHNV
2045203 diys1oquuapy 0400 = AIND

Ansuaq opojN-om |, [dud = (1.Ld

Asudgl 210D = gD

Ausudg dnoun = O

JWNOA UONESIOAUOD) = AD)

9215 210D = 8§D

az15 dnotn = §0

6t 191 8T 9T 00"~ 010 gec- LE1- €os- 1453 61T 90s’ Ad W]
EI14 314 1z 6£0° (40 0sT- Skl 6c¢ 0ge 100° Sk as wi
98 FLT (450 120™- 990 860" orl™- LEl 801 S0 AS W
L L00° 6£0° 920 rel- 660 ol £l <00’ a2 v
£90°- LE0™- 6% 1€ 0ce ccl’ F6C'- Foi™ AV
8§ <00~ S€0°- L0 S0l L0 L90"- amy
€80 £20™- Lo 911 9l 60" dand
FIL 1£¢ bidS {6¢- 891 a.lLd
oL L9¢ €6L™ 6£0° ad
08¢ cll- 0Cs- an
ST SLL AD
el 8D
SO
AdW | QS W1 | IS w1 | DO W] DV anyv | amd ald an ao AD SO SO

SO[QRLIBA {OIBOSAY JO XLIBA UONR[LI0))

£l 91qeL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hypothesis la
The Group Density of an open source software project community has an
inverted-U relationship with Code Commits.

Hypothesis 1b
The Group Density of an open source software project community has an
inverted-U relationship with Software Releases.

Hypothesis 1c
The Group Density of an open source software project community has an
inverted-U relationship with Software Downloads.

Hypothesis 1d
The Group Density of an open source software project community has an
inverted-U relationship with Page Views.

Hypothesis 2a
The Core Density of an open source software project community has an inverted-
U relationship with Code Commits.

Hypothesis 2b
The Core Density of an open source software project community has an inverted-
U relationship with Software Releases.

Hypothesis 2¢
The Core Density of an open source software project community has an inverted-
U relationship with Software Downloads.

Hypothesis 2d
The Core Density of an open source software project community has an inverted-
U relationship with Page Views.

Hypothesis 3a
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Code Commits.

Hypothesis 3b

The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Software Releases.

Hypothesis 3¢

The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Software Downloads.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hypothesis 3d
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Page Views.

Hypothesis 4
The Core Membership Degree of an open source software project community is
positively associated with Code Commits.

Hypothesis 4b
The Core Membership Degree of an open source software project community is
positively associated with Software Relcases.

Hypothesis 4¢
The Core Membership Degree of an open source software project community is
positively associated with Software Downloads.

Hypothesis 4d
The Core Membership Degree of an open source software project community is
positively associated with Page Views.

Hypothesis Sa
The Administrator Membership Degree extent of an open source software project
community is positively associated with Code Commits.

Hypothesis 5b
The Administrator Membership Degree extent of an open source sofiware project
community is positively associated with Software Releases.

Hypothesis 5¢
The Administrator Membership Degree of an open source software project
community is positively associated with Software Downloads.

Hypothesis 5d
The Administrator Membership Degree of an open source sofiware project
community is positively associated with Page Views.

Hypothesis 6a

The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Code Commits.

Hypothesis 6b

The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Releases.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hypothesis 6¢

The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Downloads.

Hypothesis 6d

The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Page Views.

5.3.2. Regression Methods

A multiple linear regression with ordinary least squares (Tabachnick and Fidell
2007) was used as the primary statistical testing method. For each hypothesis, the
relevant DV is regressed on the relevant IV. Control variables are included and tests are
performed for both linear and quadratic (inverted-U or U-shaped) relationships. The
quadratic test involves a transformation of the IV in which the [V is mean-centered and
squared {Allison 1999).

Because it is plausible that group size, core size, and/or conversational volume
may be positively related to community success, associated variables were defined and
applied as controls in every regression {refer to Section 4.3.2 for definitions). The
purpose of this approach is to isolate the effects of the independent variable from the
effects of the control variables. [n this way, the resulting explanation of variance in the
dependent variable is incremental and does not reflect effects associated with control
variables.

A single three-step hierarchical regression test is applied which incorporates the
control variables, the linear testing, and the quadratic testing. The first step is a
regression of DV on the three control variables (“model 17). The second step is the

regression of the DV on the three control variables and the relevant IV (“model 2”). The

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

third step is the regression of the DV on the three control variabies, the relevant IV, and
the relevant transformed (mean-centered and squared) ['V.

To support an inverted-U relationship, the coefficient estimates for the
untransformed 1V (in model 2) should be positive and the coefficient estimates for the
transformed IV (in model 3) should be negative and have a significant p-value. In
addition, model 3 should result in a significant change in the level of explained variance,
as measured by a significant F statistic for the change in R-squared from model 2 to
model 3. This quadratic method may also support a U-shaped relationship based on the
same criteria as described above except that the coefficient signs are reversed (i.c. the
model 2 coefficient is negative and the model 3 coefficient is positive).

The appropriate application of multiple linear regression requires the satisfaction
of certain assumptions. The testable assumptions include normality, homoscedasticity,
and linearity. It is also appropriate to look for multicollinearity among the [Vs. In the
following paragraphs, the procedures that were used to test for these situations are

described and the results of this application are reported.

Normalitv. The normality of all variables was tested and a necessary
transformation of the DVs was made as reported in Section 5.1.2. In addition, the
normality of the standardized residuals in cach regression run was tested using a
Kolmogorov-Smirnov statistic with a Lilliefors significance level, based on the null
hypothesis that the standardized residuals are normally distributed. A significance level
of less than .05 is taken as a rejection of the null hypothesis and an indication that the

values have a non-normal distribution (Mertler and Vannatta 2005). No Lilliefors

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

significance levels were less than .05, and therefore no indication of non-normality in the

standardized residuals was found for any of the 24 regression runs.

Homoscedasticity. The extent to which a DV exhibits equal levels of variance
across the entire range of variation of the [Vs is referred to as homoscedasticity. To
check for homoscedasticity, a scatterplot of the predicted values of the DV (as the x-axis)
against the standardized residuals (as the y-axis) was inspected for the presence of an
uneven spread in the vertical scatter from left to right (Mertler and Vannatta 2005). No

visual evidence was found for an uneven spread in any of the 24 regression runs.

Linearity. Linearity is the extent to which the relationship between the DV and
the IVs follows a straight-line shape. To check for linearity, a scatterplot of the predicted
values of the DV (as the x-axis) against the standardized residuals (as the y-axis) was
inspected for the presence of a non-linear pattern which deviated from a straight left to
right pattem (Mertler and Vannatta 2005). No visual evidence was found for a

significant deviation from linearity in any of the 24 regression runs.

Multicollinearity. For cach regression run, multicollinearity among the control
variables and the IV was tested with a Tolerance statistic, which is a measure of the
collinearity among the tested variables. A Tolerance value of .10 or less is considered to
be a serious problem (Mertler and Vannatta 2005). No Tolerance values were found
below the 0.10 threshold, and therefore the multicollinearity test was satisfied for all 24

regression runs.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4. Testing Results

In each of the following sub-sections, the results of each hypothesis test are
contained in a table which shows both the linear test results and the quadratic test results.
For the lincar regressions and the quadratic regressions, the tables include the
unstandardized cocfficient, the standard error, the standardized beta, the adjusted R-
squared and the change in R-squared from the first step to the second step for the linear
regressions and from the second step to the third step for the quadratic regressions. For
each regression which produced a significant result for the IV or transformed IV
cocfficient (p < .05), the detailed results of all three models are shown in Appendix D.

In general, the predictive values of the models were relatively consistent across
the 24 regressions. Including the effect of the control variables, the explanation of
variance was highest for the regressions of Software Downloads with adjusted R-squared
values ranging from .306 to .393 for the lincar regressions and from .302 to .400 for the
quadratic regressions. The predictive values for the regressions of Page Views were
nearly as high. The least predictive regressions were for Software Releases, where
adjusted R-squared values range from .011 to .070 for the linecar versions and from .006
to .065 for the quadratic versions. The predictive values for the regressions Code

Commits were only slightly higher than these values.

5.4.1. Group Density

The four Group Density hypotheses (Hla through Hid) were tested and a
summary of the results are shown on Table 14. For the linear regressions on Group

Density, a significant negative relationship was found for both Software Downloads and

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page Views (both at p <.001). For both of thesc regressions, the effect of an increase in
Group Density from the average value of .078 to a value of .178 would be to reduce
Software Downloads and Page Views by about 40 percent. Details for these two
regressions are contained in Tables D-1 and D-2 in Appendix D. Negative relationships
were also found for Code Commits and Software Releases, although at less significant p-
values of .066 and .063 respectively. For the quadratic testing, a near-significant result
was noted for the Software Downloads model and the Page Views model in support of a

U-shaped relationship.

5.4.2. Core Density

The four Core Density hypotheses (H2a through H2d) were tested and a summary
of the results are shown on Table 15. For the linear regressions on Core Density, a
significant negative relationship was found for Software Releascs (at p < .05). Further
details of this regression are contained on Table D-3 in Appendix D. Near-significant
negative relationships were also found for Code Commits (p = .057) and Software
Downloads (p = .067). For the quadratic testing, a significant result was noted for the
Page Views model (p < .05) in support of a U-shaped relationship. Further details of this

regression are contained on Table D-4 in Appendix D.

5.4.3. Peripheral Two-Mode Density

The four Peripheral Two-Mode Density hypotheses (H3a through H3d) were
tested and a summary of the results are shown on Table 16. For the linear regressions on

Peripheral Two-Mode Densily, a weak negative relationship was noted for only onc of

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the 1Vs: Software Downloads (at p = .092). For the quadratic testing, no significant or

near-significant relationships were found.

5.4.4. Core Membership Degree

The four Core Membership Degree hypotheses (H4a through H4d) were tested
and a summary of the results are shown on Table 17. No significant or near-significant
relationships were found for the linear regressions on Core Membership Degree.
However, for the quadratic regressions, one very weak result was found for Software

Downloads (p = .099) in support of an inverted-U shaped reiationship.

5.4.5. Administrator Membership Degree

The four Administrator Membership Degree hypotheses (H5a through H5d) were
tested and a summary of the results are shown on Table [8. For the linear regressions on
Administrator Membership Degree, no significant or near-significant relationships were
found. However, for the quadratic regressions, significant support (at p < .05) was noted
for an inverted-U shaped relationship with Code Commits. Details of this regression are

contained on Table D-5 in Appendix D.

5.4.6. Administrator Class Centrality

The four Administrator Class Centrality hypotheses (Ho6a through H6d) were
tested and a summary of the results are shown on Table 19. For the linear regressions on
Administrator Class Centrality, a significant positive relationship was found for Software
Releases (p <.0I). Details of this regression are contained on Table D-6 in Appendix D.

For the quadratic regressions, significant support was also found for a U-shaped

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relationship with Page Views (p <.05). Details of this regression are shown on Table D-
7 in Appendix D.

Table 14
Summary of Regressions on Group Density,
Controlling for Group Size, Core Size and Conversation Volume
{(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized Adj.

Cocfficicnt Error Beta R? AR?
Linear regressions:
Hla: Code Commits -3.3741 1.822 -.182 049 023
H1b: Software Relcases 2.427° 1.295 -.186 036 024
[T1e: Software Downloads -3.54 7k 1.237 =353 393 .086
F1d: Page Vicws ~4 87]k 1.285 =311 339 067
Quadraticy regressions:
FI1a: Code Commits 16.026 14.560 175 .030 .008
H1b: Software Releases 9.643 10.359 149 .035 .006
[11c: Software Downloads 16.375 9.827 210 400 012
HI1d: Page Views 17.097* 10.203 221 348 013

*p<.05: Fp<0l; ¥Fp< 00]; n=143 groups
¥ p=.066 {Code Commits Lincar), .063 (Soltware Releases Lincar)
1 p =.098 (Softwarc Downloads Quadratic), .096 (Page Views Quadratic)

1 First regressed an independent variable and then regressed on mean-centered and squared independent
variable

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 15
Summary of Regressions on Core Density,
Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized Adj.

CocfTicient Error Beta R? AR®
Linear regressions:
H2a: Code Commits -707" 368 -.184 050 025
F2b: Software Releases -.370% 261 =210 044 032
H2c: Software Downloads -.489" 265 -.150 321 016
H2d: Page Vicws -.267 272 -.082 276 .005
Quadratict regressions:
H2a: Code Commits 1.552 1.201 185 .055 011
12b: Software Releases 121 855 .020 037 000
H2c: Softwarc Downloads 596 866 .084 318 002
FI2d: Page Views 1.910% 877 269 295 .024

tp<05; *Fp<0l; *¥p<.00l; n=143 groups
1 p=.057 (Codc Commits Lincar), .067 (Softwarc Downloads Linear)

1 First regressed on independent variable and then regressed on mean-centered and squared independent
variable

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabie 16
Summary of Regressions on Peripheral Two-Mode Density,
Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized Adj.
Cocfficient Error Beta R? AR?
Linear regressions:
H3a: Code Commits -.249 996 -.028 .025 .000
3b: Software Releases -.399 707 -064 .013 002
H3c: Software Downloads -1.200" 708 -.159 318 014
H3d: Page Vicws -350 728 -.047 272 .001
Quadratict. regressions:
H3a: Code Commits .108 4.714 .002 018 .000
H3b: Software Releascs -2.829 3.339 -.091 011 .005
H3c: Software Downloads 1.941 3.345 052 313 002
H3d: Page Views 4.522 3.425 21 276 .009

*p<.05; *p<.0l; **p<,001; n=143 groups
Tp=.092

I First regressed on independent variable and then regressed on mean-centered and squared independent
variable

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 17
Summary of Regressions on Core Membership Degree,
Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized Ad;j.
Cocfficient Error Beta R? AR?
Linear regressions:
H4a: Code Commits .099 116 071 .030 .005
H4b: Software Relcases -0I15 083 -.015 011 .000
H4c: Software Downloads 113 .083 .096 313 .009
H4d: Page Views 052 .085 045 272 002
QuadraticE regressions:
H4a: Code Commiils -.068 061 -.132 .032 .008
H4b: Software Relcascs .023 044 .064 006 .002
Hdc: Software Downloads -073" 044 -.167 322 013
H4d: Page Vicws -.022 045 -.051 268 .001

*p<,05: ¥ p<.0l; **p<,00i; n=143 groups
tp=.099

I First regressed on independent variable and then regressed on mean-centered and squared independent
variable

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 18
Summary of Regressions on Administrator Membership Degree,
Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized ~ Adj.
Cocfficicnt Error Beta R2 AR?
Linear regressions:
[5a: Code Commits .022 .063 029 026 .001
H5b: Software Relcuases =021 045 -.040 013 .002
F3c: Software Downloads 041 045 063 308 .004
H5d: Page Views 017 .046 027 271 .001
Ouadraticy regressions:
H5a: Code Commits -.040% .019 -303 .049 .029
Ii5b: Software Relcases 012 .014 129 011 .003
H3e: Software Downloads -0i6 014 -.138 310 .006
H35d: Page Views -.007 014 -.065 267 .001

¥p<.05; **p<.0l; **p<.001; n=1i43 groups

1 First regressed on independent variable and then regressed on mean-centered and squared independent
variable

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 19
Summary of Regressions on Administrator Class Centrality,
Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

Unstandardized Standard Standardized Adj.
Cocfficient Error Beta &2 _R:
Linear regressions:
FH6a: Code Commits 573 471 18 .035 010
Ho6b: Software Releuases 963** 326 .280 .070 057
Fl6c: Software Downloads =211 .339 -051 306 002
[6d: Page Views -.247 346 -.060 273 003
Quadratict regressions:
H6a: Code Commits 1.709 1.474 103 .038 .009
H6b: Software Releascs =515 1.026 -0435 065 002
Hé6e: Software Downloads .488 1.066 035 302 .001
Féd: Page Views 2.347* 1.069 170 293 024

*p<.05; *p<0l; ***¥p<.001; n=143 groups

i First regressed on independent variable and then regressed on mean-centered and squared independent
variable

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. DISCUSSION

This chapter begins with a summary and discussion of the results in relation to the
hypotheses and in comparison with the limited empirical findings that have been reported
in the open source software literature. This is followed by a set of conjectures which
suggest plausible explanations for the alternative relationships that were implied by the
hypothesis testing results. In order to further interpret the meaning of the results, these
conjectures are then assessed with respect to their implications regarding the likely
direction of causality between social network structure and community success. Finally,
the unexpected lack of effect of structure on success is discussed and possible
explanations are offered.
6.1. Summary of Findings

This section presents a summary and discussion of the results of hypothesis
testing which were presented in Chapter 5. Each of the following sub-sections contains a
review of the results for the closure, bridging, and leader centrality hypotheses along with
an associated results summary table.

6.1.1. Closure

The results for the 12 regressions associated with closure are presented in Table
20. The table summarizes the results of regressions on Group Density, Core Density, and
Peripheral Two-Mode Density (as previously referenced on Tables 14, 15 and 16) and
shows each hypothesized relation in comparison with an alternative relation suggested by
the regression result, if applicable. All of the closure hypotheses posited an inverted-U

relationship, reflecting the expectation of a positive slope for lower levels of closure,

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

sAnoIS ¢l =t 00 > sy 10 >U ey P60 >dy

EON N-poNdAU] Aanoy SMIIA 951 Ausaoq] (AL woydudg | pey
(z60'=4) oanusoN N-po1dAl] ANALDY SPLO[UANO(d41AMJ0S Ansuoq N [royduog | ogH
JUON N-panoa] wding SOSLIJOY B OS Susuoq N, [eoyduod | gen
JUON -poudAl] mding SHUNUOD) 9po)) Susudq AL eoyduag | ven
- gL « padeys-n -PAIdAL] ANanoy SMDIA a5 Ausuwoqao) | peH
(£90"=d) danuioN N-PoLdAU] Alanoy SProOjUMD(Q] OIIM])0S Asuaqoo) | agH
€@ o[quL « JMIEBON N-PaIDAL] mding SOSLD|0Y] dlrar]jog Ausuogoio) | gcH
(£co=d) oanesioN (-PoMOAL] mding SIULWIDY) 9poD) Asudg ores | rgH
7-a o19nL, ss OALEDON N-pandaU] ANANOY SMOIA OTR Ansuoq dnoiy | pry
1-a diqey, sxx OMIEBON N-poLdAY] ANanoy SPrOjUMO(] 24iA)0S Ansuwog duoin I oyy
(£907=d) danusoN N=POLIdALY) mding SISLIDY DIM))0S Asuoqdnoin | g4
(990'=d} oanusaN N-poroaL) mdinQ)W) 3poY) Ausuoggduoany | vy

Ay, HOUDIY uounay HOISUaNIC] .
spusay jiaq | aauviLalpy paiso8Sng | palisaipodsi S$A2MG 21quIIA Mapitada(y 2)qniinA tapiadapiy #AH

sosoljodA 2.11s0]D) 10§ SINSAY 153, Jo Lwwiung

0T 21qeL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a negative slope for higher levels of closure, and a maximal point occurring at a moderate
level of closure. In effect, the positive segment of the hypothesized relationship reflects
the expected benefits associated with at least some level of density among the
conversations, while the negative segment reflects the prediction that additional
connections would be counterproductive and that the “cost of ties” would become
dominant, as discussed in Chapter 3.

For Group Density, the results did not support an inverted-U shape for any of the
hypotheses. Rather, a negative relationship was found. The strongest ncgative
relationship was found between Group Density and the two community activity variables,
Software Downloads and Page Views (at p-values < .001). Therc is also evidence of a
negative relationship between Group Density and the community output variables,
although the relationship is not as strong (with p-values of .066 and .063). With
reference to the results for the Hlc and H1d hypotheses, it is noted that these regressions
showed both linear relationships and U-shaped relationships. Because the linear
relationships had a more significant p-value (< .001) than the U-shaped relationships
(.098 and .096), they were considered to be dominant and only the linear results are
shown in Table 20.

For Core Density, an inverted-U relationship was also expected but with a less
extensive negatively sloped segment, considering the additional positive bencfits
associated with the needs of the core subgroup to be more interactive in creating the
software. For these hypotheses, a mostly negative relationship with community success
was observed, with three of four regressions showing a negative result. The negative

relationship was stronger and more consistent for the output variables than for the activity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables. The strongest result was between Core Density and Software Relcases (p <
.05). In the case of the activity variables, one of the two relationships (with Page Views)
was found to be a U-shape (at p < .05). A U-shaped relationship involves a negative
slope for lower levels of the independent variable and then a positive slope for higher
levels of the independent variable, with a minimum occurring at a moderate level of the
independent variable.

For Peripheral Two-Mode Densily, an inverted-U relationship was expected but
with less emphasis on the negative side because of the additional benefits associated with
the positive psychological effects of including the peripheral developers in core
discussions. The results of these regressions did not support the hypotheses, but rather
contained only one weak negative relationship (p = .092) on just onc of the four success
variables — Software Downloads - with no effect scen on the other three variables.

While it was generally expected that the closure-success relationship would be an
inverted-U in which a segment of the curve is negatively sloped, it was surprising to find
a negative slope for the entire length of the curve in § of the 12 closure hypotheses. In
effect, these results suggest that there is essentially no benefit to closure within an open
source software project community.

The strongest negative relationships for Group Density were noted for the activity
variables, while the strongest negative relationships for Core Density were observed for
the output variables. Comparing the Group Density results with the results for Core
Density, it is noted that the negative relationships were less pronounced for the core
subgroup than for the group as a whole. This may be an indication that the expected

benefits associated with the needs of the core subgroup are influencing the result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, it is still surprising to consider that density among the core subgroup scems to
produce no benefit with respect to community output. It is interesting to note that no
significant negative relationship was scen for the Peripheral Two-Mode Density
hypotheses which may indicate that the expected benefits of the peripheral-core
conneclivity are acting to offset the otherwise negative aspects of closure as noted above.

It is difficult to compare these findings with reports in the open source software
literature because most of the prior social network studies of open source have been
descriptive and have not attempted to relate social network structure to success at the
level of the project community. Healy and Schussman (2003) study the statistical
characteristics of the entire sct of projects on SourceForge but they do not address social
network structures at the project fevel. Krishnamurthy (2002) notes the surprisingly low
volume of conversations in open source projects but the author does not calculate
conversational density. Volume and density are distinct concepts and a finding of low
volume does not necessarily imply a finding of low density, although the two arc not
inconsistent.

One recent paper by Crowston and Howison (2006) reported the results of an
empirical study of bug report forums. Their method of collecting data and defining the
conversational network was similar to the method used in this dissertation, except that
they focused their data collection efforts on bug report forums rather than general forums.
The authors calculated and reported density of the conversation networks and found a
negative relationship between conversational density and group size. This result
corresponds with the findings of the dissertation that group density and group size are

negatively correlated (Pearson correlation value of -.52, see Table 13). However, the

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Crowston and Howison (2006) study did not consider a success variable in their
regression. They regressed density on group size, while the dissertation study regressed
success on density while controlling for group size. Thus, the dissertation study
controlled for the relationship between density and group size, and still found a negative
relationship between density and success. Crowston and Howison did not perform such

an analysis.

6.1.2. Bridging

The results for the 8 hypotheses associated with bridging are presented on Table
21. A positive relationship was expected for these hypotheses, which includes Core
Membership Degree and Administrator Membership Degree. As discussed in Chapter 3,
there werc a number of expected benefits associated with bridging ties such as providing
access to new ideas, obtaining help to solve problems, and increasing the likelihood of
recruiting new members (o the focal project. While some cost-of-ties cffect was
recognized, it was noted that this cost was not compounded as with intragroup ties and
therefore an overall positive relationship was expected.

The results for the bridging regressions did not support a positive relationship for
any of the hypotheses. For Core Membership Degree, only one of the four runs showed
an inverted-U result — Software Downloads - and that result was very weak (p=.099).
The other three runs showed no significant effect. Considering that a positive
relationship was expected, it was surprising to find that the extensiveness of bridging ties

did not have an effect on success, implying that such bridging ties are not an important

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sdnoaS ¢pl =1t 100" > d g

¢

10 >d 4 10 >dy

DUON 2ANI50] ANanoy SADIA 051 | 00183 QWD ‘uupy | pCH
oUON JA1ISO Suanay SpEojUMO(uMiJoS | daisaq IQUIDIA "uwpY | aCH
JUON ANISO(] inding SOSRO[OY 2ULMJOS | 92IBO(QDI TUlWpPY | gCH
¢-g dquL % N1-POMdAL] JANISO mding SHWWO) 0p0y | 0045aQ MoqudlN ‘ulWpy | UCH
JUON JANISO| Aanoy SMIIA 58| 20150(] QUBDIN 210D | PEH
(660'=d) N-poudan] JAINISO,] AJIANOY spuoumo(2IeMYOS o0M5a(] oquIdIN 040D | IFH
JUON ANISO(mding 50SEJ|2Y dIeMIJOS 20150 IOqUIDIN 010D | GFH
JUON JAIISO(mdmmgQ SHWWOo)) 3p0)) Jd150Q WQUdIN 0] | DEH
a|qny HOHDIY HOI]Y uoIsHalcl .
sinsay potagy | anupaaiy paisading | pazisotpodsy $822018 g Napuadacy AuLDA tapuadapiy #d<y

sasaylodA SwiSprg Joy synsay 189 Jo Arewung

(NALRLAP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

factor in open source softwarc project communities. For Administrator Membership
Degree, again only onc of the four runs showed an inverted-U result — Code Commits -
although in this case, the result was significant at p < .05. Again, the lack of an effect of
administrator bridging on three of the four success variables was surprising.

In a recent study by Grewal et. al. (2006), the authors collected data from 108
open source software project communities on SourceForge and related various measures
of bridging (which they refer to as “network embeddedness™) with the number of code
commilts and the number of downloads (used as measures of project success). Overall,
the authors obtained a mixed set of positive, negative, and “no-effect” relationships
between bridging and success. Their conclusion that the impact of bridging was greater
on code commits than on downloads is consistent with the dissertation results. Their
suggestion that bridging has “powerful but subtle effects on project success” is generally
inconsistent with the dissertation finding that bridging had only a minor effect on success.
However, due to methodological differences, the comparability of the (wo studies is
questionable. For example, Grewal el. al. (2006) used many different bridging measures
which were not comparable to the measures used in the dissertation. In addition, their
study utilized a nominalist sampling approach in which 10 projects were sclected based
on their common platform technology and then other projects were selected based on
known bridging ties with these original 10 projects. This is in contrast with the
dissertation study in which a random sampling strategy was used. It is possible that the
bridging results for a sample of projects with known bridging connections may be

different than the results for a randomly selected sample of projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.3. Leader Centrality

The results for the 4 hypotheses associated with leader centrality are presented on
Table 22. As discussed in Chapter 3, some positive relation was expected between
leader centrality and success in that a certain level of connectedness between the leaders
and the rest of the group would seem to be necessary to integrate the code contributions
of the members and to coordinate some activities as needed. However, at higher levels of
leader centrality, a cost-of-ties effect was expected in which too much centrality becomes
burdensome on thc administrators, resulting in a negative curve at higher levels of
centrality. Therefore, the hypotheses linking Administrator Class Centrality with
community success posited an inverted-U relationship.

The results presented in Table 22 did not support an inverted-U shaped
relationship for any of the four leader centrality hypotheses. However, the suggestion of
an alternative relationship shape was inconclusive. In the case of Software Releases, an
alternative positive relationship is suggested (p <.01). Yet, in the case of Page Views, an
alternative U-shaped relationship is suggested (p <.05). For the other two hypotheses, no
significant effect was noted.

With regard to open source software literature, no studies were 1dentified in which
leader centrality measures are investigated. However, the literature does suggest that
open source administrators tend to operate in low key roles, avoiding power relationships
and delegating as much as possible. These observations are not inconsistent with the

finding that leader centrality had a mixed relationship with success.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8¢l

sdnoIF ¢ =t 00 >dgus S 10°>d e (60 >y
[-Q 219%], « Podeys-n -Po1dAU] Aanoy SAVDIA O8] Anenua)y sse) ‘uiupy [poy
JuoN N-poLAl| KUAnoY SprojUMO(dIuM]JOS Lnenudy sse) wwpy [a9y
9- o|qn L. s OANISO N-poNoAU] wdinp SaSE0|9Y oleMosg Anenualy ssep) upy [gop
JUON N-poldAU] mding SHwwo)) 9po) Lupenua) sse) uwupy [oy
i 10117]2Y] e HoISUMII(} .
synsay piacy | aapualpy parsaddng | pazisaipiodiy $$220N5 a1quLInA Mapuadacy ajquinA tapradapuy #ASp

sosatjjodAH Anjenua)) 1opesT Joj s)nsay 159, JO Alpuung

(44 BLAS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In summary, of the 24 hypotheses that were tested, a total of 7 produced results
which were significant at p < .05 (see Tables D-1 through D-7), 6 produced results which
were significant at p < .10, and the remaining 11 hypothesis tests showed no significant
effects. While none of the hypothesized relationships were supported, the alternative
relationships that were suggested are summarized below:

1. In general, a negative relationship was observed between the closure

variables and the success variables (mainly considering the activity variables

regressed on Group Density, and the output variables regressed on Core Density).

2. U-shaped relationships were observed for Page Views (considering the
regressions on Core Density and Administrator Class Centrality).

3. An inverted-U relationship was observed between Administrator
Membership Degree and Code Commits.

4. A positive relationship was observed between Administrator Class
Centrality and Software Releases.

6.2. Conjcctures and Causality

As discussed in the previous section, the results broadly deviated from
expectations. Considering that this was one of the first large-scale empirical studies of the
relationship between social network structure and success in open source software project
communities, it secemed likely that some surprising results would be found. However, the
extent of the deviation that was observed was dramatic considering that the hypotheses
were formulated based on well-established social network theories of team effectiveness
with plausible adjustments made to reflect expected differences between teams and open
source software project communities. I[n addition, even though the expected relationships

were not found, a number of other relational shapes were implied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this section, conjectures are offered which attempt to explain each of the four
significant findings noted at the end of the previous section. These conjectures consist of
explanatory arguments which are plausible but which are not empirically tested in the
current study. Considering the extent of deviation from expectations, it is also
appropriate to reassess the causalily assumptions which were inherent in the study’s
conceptual research model (Figure 4). Therefore, each conjecture is further reviewed
with respect to its implications for the most likely direction of the causal arrow between
social network structure and community success. [n the remainder of this section, each

finding is stated, followed by one or more conjectures which are related to that finding,.

Finding #1: in general, a negative relationship was observed between the closure
variables and the success variables. The closure of a network is essentially the
proportion of the total possible links in a network that are actually connected. Therefore,
a higher closure value indicates more connected links while a lower closure value
indicates fewer connected links. If the causal arrow is assumed to point from structure to
outcome, then the observed negative relationship between closure and success would
imply that a lack of network links can somehow cause or logically lead to success. No
plausible conjectures were identified which could explain such a relationship. Therefore,
the possibility of a spurious relationship was considered whereby a third factor is
identified which affects both closure and success.

Three conjectures were formulated which, if valid, imply that the negative
relationship between closure and success is spurious. All of these conjectures involve a

third factor which is associated with the attributes of certain project artifacts. One of

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these factors is the modularity of the software architecture, which is a technological
artifact. The other two factors include the quality of the software documentation and the
appropriateness of the project rules, both of which are informational artifacts of the
project. These three factors and their suggested impact on closure and success are

discussed below.

Software architecture. The modularity of the software architecture is recognized
as an important success factor for open source software projects (MacCormack et. al.
2006). Modular software architecture permits changes to source code within one module
without significant effects on code contained in other modules. An ineffective modular
design will tend to increase coding interdependencies in which the coding work of one
developer is more likely to affect the work of other developers.

As a result, ineffective modularity will tend to increase the closure level as multi-
person conversations are needed to discuss the impact of code changes and to investigate
complex bugs which are more likely to arise. At the same time, this may lead (o a
reduction in developer productivity as efforts are shifted from coding to conversation,
and may also demotivate the developers who are focused on writing code and view
conversation as a distraction. The need for dense discussions may frustrate these
developers which may cause them to reduce their effort level and in some cases they may
even choose to abandon the project. The combined impact of reduced productivity and
reduced effort is to decrease the output dimension of success.

With regard to the activity dimension of success, ineffective modularity can

directly reduce the quality of the software that is produced, because of the increased

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

likelihood of complex bugs and their negative impact on software usability. In addition,
the reduction in productivity and coding effort that was mentioned above will have an
indirect negative effect on software quality. A lower level of software quality will tend to
reduce the interest level of the community which will translate into a decrease in the
number of downloads and the number of page views, both of which are measures of the
activity dimension of success.

In summary, ineffective sofiware modularity will tend to increase closure as a
result of the increase in coding interdependencies, and at the same time, it will tend to
decrease output due to losses in productivity and effort, and will decrease activity due to
negative impacts on software quality. The suggested positive relationship between
modularity ineffectiveness and closure and the suggested negative relationship between
modularity ineffectiveness and success will result in a negative correlation between
closure and success. However, because this negative correlation arises from the effects
of a third variable (software modularity incffectiveness), the closure-success relationship
would be viewed as spurious and no causal relationship would be suggested between

closure and success.

Software documentation. In a sofiware development project, the software
documentation contains a description of the overall architecture and modular structure of
the software, specific descriptions of the functionality of various procedures, data
definitions, and other Important information about the software. High quality
documentation is clear and complete and it makes the overall software architecture

explicit. Poor or incomplete documentation can increase the level of closure as questions

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and discussions are necessary in order to clarify features of the software that are useful
and/or nccessary to know as a developer writes source code. As with ineffective softwarc
modularity, a low quality of software documentation will decrease oulput success as
effort is shifted from coding to conversation and as frustrated developers reduce their
overall level of effort.

Poor quality software documentation can directly reduce the quality of the
software that is produced, because of the increased likelihood that coding efforts will be
based on incorrect assumptions and missing information. In addition, the reduction in
productivity and coding effort will have an indirect negative effect on software quality,
which as was the case with ineffective software modularity, will translate into a decrease
in the activity levels of the project community.

Thus, poor quality software documentation will tend to increase closure as
questions and discussions are necessary to clarify knowledge needed for coding tasks. At
the same time, it will decrease output and activity as described above. As with the
software modularity conjecture, this suggests that the negative relationship between
closure and success is spurious and arises as a result of the positive relationship between
poor software documentation and closure and the negative relationship between poor

software documentation and success.

Project rules. Open source software projects are less reliant on hicrarchy and
supervision than software development teams, and therefore the project rules play an
important role in guiding the behavior of the independent contributors. These rules may

be formally stated in a document or they may be informally stated in various public

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

forum postings. The open source license that is chosen is also part of the project rules.
in effect, these rules provide guidelines regarding the rights and responsibilities of the
community members, and they specify certain types of behaviors that are either
encouraged or discouraged. Rules which are inappropriate or understated will tend to
lead to complaints, disputes and controversies that require multi-person discussions, thus
resulting in an increase in closure. As with the software architecture and software
documentation artifacts, this increase in closure will tend to reduce the output levels, and
the resulting indirect negative impact on software quality will tend to reduce the activity
levels. Therefore, this conjecture also implies that the closure-success relationship is

spurious, based on arguments that are similar to the two previous conjectures.

Finding #2: U-shaped relationships were observed for Page Views. As
previously noted, U-shaped relationships were observed between Core Density and Page
Views and between Administrator Class Centrality and Page Views. This suggests that a
negative relationship exists for lower levels of the independent variable and that a
positive relationship exists for higher levels of the independent variable. No conjecture
which assumes a homogeneous study population could be identified to explain this result.
However, if it is assumed that a subset of the study population has different
characteristics that would lead to a positive relationship with Page Views, then the
combination of this situation with a negative relationship for the remainder of the
population (as was seen in other regression tests) would result in a U-shaped relationship.

In particular, it is possible that certain project communities consist of individuals

who know each other in an off-line context and who choose to utilize the resources of

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SourccForge to collaboratively develop software. These groups may utilize planning and
control approaches that are associated with teams and that are not commonly used in
open source software project communities. In effect, these may be de facto software
development teams that use the SourceForge facilities to conduct their work. [f this were
true, then these de facto teams would likely exhibit positive relationships between closure
and success and leader centrality and success, similar to the relationships that have been
observed for other kinds of teams.

If this conjecture is true, then the study population actually consisted of two
different regimes which would tend to dilute the results and reduce the significance of all
of the regression results. However, it is noted that only 2 of the 24 regressions resulted in
a significant U-shape and that various other regressions did show significant linear and
inverted-U results. In addition, a significant regime split can often be detected by an
obvious bimodal or multimodal distribution of the research variables, and no such
distribution pattern was noted. Therefore, it is suggested that the impact of the U-shaped
finding is secondary and that there are no important implications regarding the direction

of causality.

Finding #3: an inverted-U relationship was observed between Administrator
Membership Degree and Code Commits. This relationship involves a positive slope for
the lower values of bridging and a negative slope for the higher values of bridging. The
most plausible conjecture for this result is that the expected positive effects of bridging
are in fact being observed for the lower values of the bridging variable. However, at the

higher values of the variable, it is possible that a “cost-of-ties” effect is being seen, in

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which too many bridging ties become burdensome on the administrators and the effect on
community success is negative. This cost-of-ties effect was expected for closure and
Icader centrality but was not expected for bridging because the tic only affected one
member of the community (the administrator) and the level of expected benefits was
extensive. However, because of the importance of the administrator, the cost-of-ties
effect may in fact be important. If this conjecture is true, then the implication is that the
causal arrow does point from social network structure (bridging) to output (Code

Commits) in reference to this finding,.

Finding #4: a positive relationship was observed between Administrator Cluss
Centrality and Software Releases. The decision to make a soflware release is typically
made by the administrator. While a high level of coding activity (Code Commits) is
logically associated with frequent releascs (Software Releases), it is possible for an
administrator to make frequent releases even if there is a relatively low volume of code
commits. In effect, the decision to release is somewhat arbitrary and it is possible that
certain administrators are biased towards frequent releases and therefore they have a
higher “propensity to release” than others. [f this were the case, then those administrators
with high propensity to release would make frequent releases resulting in a high level of
Sofiware Releases. In this situation, the frequent releases would tend to gencrate
questions and comments from developers who download the releases and these
conversations would tend to dominate the forums and would be directed to the releasing
administrator, resulting in high levels of Administrator Class Centrality. In effect, these

administrators would be generating their own centrality. If this conjecture were true, then

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the implication would be that the causal arrow points in a reverse direction from the
assumption of the research model — that is, it would point from outcome (Software

Releases) to social network structure (Administrator Class Centrality).

Summary. Of all the conjectures offered in this section, only the one for finding
#3 implies that the causal arrow points from social network structure to success.
Otherwise, all of the other conjectures imply spurious resuits, reverse causality, or the
presence of a qualitatively different subset of communities. Taken together with the
various other “no effect” results that were observed, the general implication is as follows:

The social network structure of an open source software project community

has no important effect on community success.

In addition, the three conjectures associated with the negative relationship
between closure and success (finding #1) imply that:

The closure of an open source software project community is a condition or
indicator of community success, but is not a driver or cause of such success.

6.3. The Insignificance of Structure

In the previous section, it was concluded that the social network structure of the
open source software project communities that were studied had no important effect on
community success. In this section, this insignificance of structure with respect to
success is further discussed. In particular, explanations are offered regarding how it
could be that social network structure has no important effect on community success,
even though social network theory, supported by numerous empirical studies, suggests

that structure should be Iimportant with respect ta group performance.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As previously discussed, social network theory is based on the notion that a social
network acts as a conduit for the flow of resources such as knowledge and the tangible
resources that can be accessed based on that knowledge. Social capital theory suggests
that a structure with high closure within a group will improve the performance of tasks
which require the utilization of the knowledge of the group, while a structure with many
bridging ties between group actors and non-group actors will improve the performance of
tasks which require access to knowledge which is beyond the boundaries of the group. In
effect, social network structure is predicted to be important to success in work groups
because it can cnable or impede the transfers of knowledge, where such transfers arc
needed to support aclivities such as learning, problem-solving, coordination and task
completion, all of which are necessary for successful group outcomes.

Considering this knowledge transfer view as a frame of reference, there are (wo
general rcasons that can be offered to explain the insignificance of social network
structure with respect to community success. One possibility is that knowledge transfers
are somehow being mediated without the involvement of the social network. In effect,
other mechanisms may substitute for the social network as a mode of knowledge transfer.
The other possibility is that there may simply be less need for knowledge transfers in
successfully completing the work associated with open source software projects.
Ultimately, both of these reasons may contribute to the ecxplanation of the
counterintuitive findings that were previously described. In the remainder of this section,

various conjectures are offered which expand upon these two possibilities.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.1. Substitutes for the Social Network

While it may be possible to imagine knowledge transfers that arc mediated
through shared cognition and/or strong culture, the most tangible possibility seems to be
that knowledge could be transferred indirectly through artifacts rather than directly
through the social network. Open source software developers operate in a network-
mediated computing environment involving many types of tools and other technical
artifacts such as source code repositorics, programming languages, project web pages,
and others (Scacchi 2002). The scenario in which artifacts can successfully mediate
knowledge transfer is feasible to the extent that the artifacts can be inscribed with
knowledge and that the task can be structured to allow for workflows from person to
artifact to person, rather than from person to person. In this case, the artifacts become the
mediators of knowledge transfer and they act as a substitute for the social network in this
regard. This is somewhat similar (o the “knowledge ecology” view offered by Lanzara
and Morner (2003).

For example, the source code is an artifact of the project. The statement
sequence, algorithmic logic, and general organization of the code can be viewed as a kind
of inscription of knowledge. When a developer checks out a batch of code from the
source code repository, the knowledge that was inscribed by all of the previous
contributors to that code becomes available to that developer. In a sense, these prior
developers are “speaking” to the new developer through the code. As this developer
makes changes to the code, he or she is inscribing their own knowledge into the code, and
this new knowledge becomes available to other developers as soon as the new code is

committed into the repository.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An example of artifact mediation as a substitute for social network structure may
be found in the use of outside project records by teams versus open source software
project communities. In the casc of teams, the detail and accessibility of these outside
records is relatively limited compared with the transparency and accessibility of open
source software project records. Team members commonly use their bridging ties in
order to obtain this outside information and therefore the bridging structure of their social
network is important for successful outcomes. [In the case of open source software
developers, however, it is possible to obtain a great deal of information about outside
projects from the publicly accessible work rccords in the form of source code
repositorics, public forums, and other informational artifacts which are posted on the
project web site, all of which can be located with the use of an efficient search engine.
These records can be used by developers to learn about other projects and to obtain useful
artifacts such as source code fragments and even problem solutions which are noted in
public forums. Thercfore, the importance of the bridging ties is reduced and the public
record artifacts act to substitute for the social network structure with regard to mediating
these knowledge flows. The use of open source software project records in this manner
was noted by von Krogh et. al. (2005) who found that developers often reported reading
the mailing lists of other projects:

The barriers between open source projects seem to be less distinct as one might

assume. Since developers stated that they tend to read several projects’ mailing

lists, it is difficult if not impossible to track ‘silent’ and uncredited knowledge

transfer in the form of ideas between projects as there is no formal system for
recording these kind of transfers.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the case of social network mediated knowledge transfers, an ineffective social
network structure can act to impede the knowledge flow (for example, as where low
closure limits the interpersonal flow of knowledge). In a similar way, an ineffective
design for a knowledge-mediating artifact may act to impede the flows of knowledge.
For example, if the sofiware documentation artifact is of high quality, then it can be
relied upon to facilitate knowledge transfers. If however it is of low quality, then it can
impede such transfers and require that the social network be used in its place. If the
overall task structure is designed for artifact mediated transfers, as may be the case in
open source software projects which must operate in a geographically dispersed and
asynchronous cnvironment (Yamauchi et. al. 2000), then this can represent an

inefficiency which is reflected in a lower level of success.

6.3.2. Reduced Need for Knowledge Transfer

Various possible explanations can be offered regarding why there may be less
need for knowledge transfer in open source software project communities, when
compared with the nceds of traditional teams. These explanations are listed and

described below.

Modular software architecture. Modular software architecture permits changes to
source code within one module without significant effects on code contained in other
modules. This reduces the need for knowledge transfer between developers who are

working on different modules.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Accepted standards and tools. The use of well-known coding standards, design
approaches, and programming languages may act to reduce the need for knowledge
transfer because developers will already be familiar with these tools and will not require

additional knowledge in order to use them.

Highly skilled developers. Project community members may be so highly skilled
and experienced that knowledge transfer is not very important for learning and problem
solving. These experienced individuals may not need direction from a central leader but
rather are self-directed such that their choice of task and work method productively
contributes to the overall software development task. They may also not need or want

help from other members of the project community or from individuals outside of the

project community.

Familiarity. It has been observed that familiarity among the members of teams
can act to weaken the relationship between social network structure and team
performance, implying a reduced need for knowlcdge transfers (Balkundi and Harrison
2006). This may also be observed in open source software projects. However, the study
population involved the two-year period following the first relcase of software, and
therefore the familiarity effect may not be so important in this study as compared with the
familiarity that develops in teams over the span of many years. In open source projects, it
is also possible that the core developers become familiar with the source code itself to the
extent that they have contributed to its growth from an early seed stage. This kind of

familiarity may also reduce the need for knowledge transfer.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Developer as user. In developer-targeted software projects, the developer is also
the user and therefore the communication that would normally occur between user and
developer is not necessary. This would result in a reduction in the neced for knowledge
transfer, based on a comparison with a traditional team-based approach in which external

users are usually consulted in developing software requirements and in evaluating the

project output.

Open source culture, The culture of the broader open source software
community is characterized as a kind of meritocracy in which a rational approach is
favored over other approaches which resort to hierarchical position or relationships of
power and influence (Raymond 1999). Such a culture may result in limited exchanges of
knowledge compared with hierarchical cultures which require more protracted and

extensive knowledge transfers as may be seen within a bureaucratic structure (Yamauchi

2000).

Shared mental models. To the extent that participants have shared mental models,
it is possible that these shared models may reduce the need for knowledge flows
associated with coordination and other development activities (Scozzi et. al. 2008). In
some respects, this may be related to the notion of familiarity as described above. In

addition, shared mental models can also be viewed as an aspect of the open source

culture.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. CONCLUSIONS

The objective of this dissertation resecarch was to investigate the social network
structural conditions that are associated with success in open source software project
communities. In pursuing this goal, a set of propositions were developed based on social
network theories of teams and other relevant theoretical and empirical literature. These
propositions were operationalized in the form of 24 hypotheses which were then tested
using data obtained from open source software project archives. The results deviated
broadly from the expectations and an alternative set of relationships was observed.

Plausible explanations for the alternative relationships were suggested and
analyzed and the two primary implications were that 1} the social network structure of an
open source software project community has no important effect on community success,
and 2) the closure of an open source software project community is a condition or
indicator of community success, but is not a driver or cause of such success. This
“insignificance of structure” was examined and a series of explanations were offered
which suggested that artifacts may be substituting for the social network as a knowledge
transfer medium, and that the overall need for knowledge transfer within an open source
software project may be lower than in a traditional team-based project.

In this final chapter, the implications of these surprising results are further
explored. This begins with the suggestion that the observed anomalies may represent a
paradigm disruption which triggers the need for theory building. Some requirements for
such a theory building effort are offered along with two propositions which are suggested

as extensions of explanations offered in Section 6.3. This is followed by a discussion of

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the implications for research and practice, the contributions of the work, a discussion of

research limitations, and a presentation of future research directions.

7.1. Implications

The arguments presented in Chapter 6 suggest that the findings of this work
represent an anomaly with respect to currently accepted theories of team effectiveness
and social capital. More broadly, this work suggests that what is referred to as an “open
source software project community” is actuaily neither “team” nor “community” but is a
new kind of social entity which is built upon a socio-technical development process
involving extensive interactions between humans and technical artifacts. In this section,
these suggestions are further explored regarding the possibility that open source software
may represent a disruption to the team development paradigm. This is followed by a
discussion of requirements for building this new theory. Finally, the implications of

these conclusions with respect to research and practice are considered.

7.1.1. Paradigm Disruption

A paradigm is characterized by well-accepted theories and ways of thinking
(Kuhn 1996). The disruption to an existing paradigm is often identified by observations
which are counterintuitive and by the failure of existing theories and paradigmatic
thinking to account for these observations (Kuhn 1996). In addition, Kuhn notes that
technology changes will often lead to paradigm disruptions: “... technology has often
played a vital role in the emergence of new sciences.” (Kuhn 1996)

It is argued that the concept of teams and the social network theory of team

effectiveness are aspects of a team development paradigm. In particular, the notion that

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

teams are the fundainental means for developing knowledge products is certainly well
accepted in research and practice. In addition, the assertions of social capital theory
regarding the importance of closure and bridging structures for work group outcomes are
well-tested and broadly applied throughout the social network theoretical literature.

In the case of open source software project communities, it is neted that open
source is a relatively new phenomenon which has emerged along a track which is
generally parallel to the developmental track of the internet. Further, open source
projects are highly dependent on the internet and advanced information technology tools
which have only recently become available. Therefore, it is certainly possible that a
technology as pervasive and disruptive as the internet could be leading to the emergence
of a new form of collaborative development which might represent a disruption to the
team paradigm.

The findings of this research that the social network structures of an open source
software project community have no important effect on its success are certainly
counterintuitive. How could social networks not be important for developing software in
these communities when they are so important in teams? [n particular, it is difficult to
fathom how a knowledge-based product as complex as computer sofiware could be
developed without the need for dense interactions to facilitate knowledge flows between
and among the participating developers.

In Chapter 6, the results of this work were analyzed in depth with reference to the
current social nctwork theories and it was apparent that these theories offer little or no
predictive value regarding the success of open source software project communities.

Taken together with the presence of counterintuitive findings and the possibility that the

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

internet has spawned a new kind of collaborative development process, these arguments
suggest that:

The open source software project community may represent a disruption to the

team development paradigm.

A paradigm disruption triggers the need for theory building. If upen source is in
fact a paradigm disruption, then the néed for new theories is apparent. However, even if
open source does not qualify as a “full blown” paradigm disruption as defined by Kuhn
(1996), the results of this study, if confirmed by future studies, would certainly suggest

that a significant anomaly has been found and a confirmed anomaly is a reason for theory

building (Weick 1989).

7.1.2. Requirements for a New Theory

Kuhn (1996) describes the typical theory building process that is associated with a
paradigm disruption:

Discovery commences with the awareness of anomaly, i.e., with the recognition

that nature has somehow violated the paradigm-induced expectations that govern

normal science. [t then continues with a more or less extended exploration of the
area of anomaly. And it closes only when the paradigm theory has been adjusted

so that the anomalous has become the expected. (Kuhn 1996)

The scope of a new theory which addresses the disruption of the team paradigm
could possibly encompass all forms of collaborative development involving the structures
and behaviors of teams, virtual development communities such as open source sofiware
project communities, and similar forms of organization and activity. However, in the

short-run, an important starting point would be to build and test theories which are

focused on explaining the anomalies of open source software development.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The overall problem to be addressed by the new theory is cxplaining how open
source software project communities can successfully develop complex artifacts such as
software without being impacted by the social network structures of closure, bridging or
leader centrality. In particular, the theory should explain why social network structure is
not important for learning, problem-solving, coordination and task completion in open
source software project communities, even though it is important for the successful
performance of these activities in teams.

Based on the discussions and possible explanations that were offered in Section
6.3, the following two propositions are suggested as a foundation for future theory
building:

Proposition A

Compared with software development teams and teams in general, open source

software project communities substitute artifact mediation for social networks as a

mechanism for knowledge transfer.

rroposition B

Compared with software development teams and tcams in general, open source
software project communities have less need for knowledge transfer in achieving

successful outcomes.

The conjectures and explanations offered in Chapter 6 may provide a starting
point for further elaborating these propositions and developing testable hypotheses. For
example, in expanding on Proposition A, it may be useful to consider the source code
repository, software documentation and project rules as artifacts which may be
substituting for social networks. In this case, the theory would need to specify how these
types of artifacts are mediating knowledge flows and also how the overall task structure

and workflow patterns could be organized to permit such flows to lead towards

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

successful task completion. Such a theory might incorporate the notions of self-
organization and evolutionary mechanisms. [n expanding on Proposition B, the various
explanations offered in Section 6.3.2 may provide the basis for defining various
hypotheses. Again, the theory would need to specify the manner in which successful task

completion can occur without the related knowledge flows taking place.

7.1.3. Research Implications

In many respects, the new theory building process has already begun as evidenced
by the significant level of research interest in developing new frameworks and
mechanisms for describing and explaining the unique aspects of open source software
projects. In a recent article by von Krogh and von Hippel (2006), the authors organize
their review of the current status of open source software research into three categories:
1) motivations of open source software contributors, 2) governance, organization, and the
process of innovation in open source software projects, and 3) competitive dynamics
enforced by open source software. The propositions suggested in Section 7.1.2 involve
aspects which are part of von Krogh and von Hippel’s second category of research.
With regard to other open source sofiware research efforts, the works of Lanzara and
Morner (2003) and Lee and Cole (2003) may be especially relevant to the suggested new
theory in that these authors discuss the importance of evolutionary mechanisms in the
open source development process, and these mechanisms may help to explain how
artifact-mediation can substitute for social network structure and still provide adequate

support for successful group outcomes.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With respect to organizational theorics, even though it is suggested that open
source software project communities are not teams, they are still collective forms of work
production and therefore organizational theories should be relevant. In particular, some
of the earlier organizational resecarch works in the areas of substitutes for leadership
(Howell, et. al. 19806), sclf-regulating teams and socio-technical systems (Cummings
1978), and centralization versus decentralization (Carley 1995) may be productive areas
for further investigation. As an example, Kerr and others (Kerr and Jermier 1978) have
proposed a substitutes for leadership theory which suggests that highly structured tasks
may require lower levels of leadership. In effect, the greater the task structure, the less
the requirement for direction. This implies a certain reduction in the required knowledge
transfers between the leader and the other team members. As a result, this theory may
help to explain the reduced need for knowledge transfer in open source software project
communities based upon the structure of the open source tasks. This may be especially
applicable for explaining the lack of effect of lcader centrality on community success.

In a broader sense, the possible presence of a paradigm disruption should alert
researchers in the fields of open source software, team effuctiveness and social capital
theory to reconsider and more explicitly state their assumptions. In general, the presence
of a paradigm can cause a kind of “blindness” to other possibilities and the resistance to
paradigm changes is well-established (Kuhn 1996). As a result, researchers in these
domains should recognize the possibility that their paradigmatic perspective may be
limiting their choice of research phenomena to be studied. In particular, it is possibie that
existing open source software researchers have been unduly influenced by the team

paradigm and it may be appropriate to step back and consider the possibility that open

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source software communities may be a fundamentally new form of collaborative
development. This might involve taking a more grounded approach which explicitly
identifics and isolates the team-oriented concepts. In the domain of social network
theory, researchers should reconsider their basic assumptions about the social network as
a conduit for knowledge flow and consider alternative perspectives in which artifacts may
play a key role in knowledge transfer. This may be especially relevant in the study of

socio-technical systems.

7.1.4. Practical Implications

One practical implication of the study relates to the finding that administrator
bridging has an inverted-U relationship with code commits. This implies that a project
community can benefit from the membership tics of the administrator and therefore
connections with other projects should be pursued. However, too many ties can be
counterproductive and administrators should be aware of how their other memberships
and commitments may be having a negative impact on the success of their projects.

In terms of artifact design, the study results imply that certain project arlifacts
including software architecture, software documentation, and project rules may be
important factors of success. Administrators and host platform designers should be
aware of the importance of these artifacts and should take actions to ensure that they are
properly designed. If problems arise, these artifacts should be carefully evaluated to see
if there are any deficiencies that can be corrected.

In more general terms, perhaps the most important implication for practice is the

recognition thal open source may represent a fundamentally new form of collaborative

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development. Practitioners should expand their perspectives and reconsider their
assumptions that a team is the only organizational form which can be used for
collaboratively developing a knowledge product. Open source methods have been shown
to be a useful and interesting alternative to team-based software development methods.
However, practitioners should be aware that other possible applications of open source
methods may be feasible in areas such as the development of innovative product designs,

knowledge repositories, and other kinds of knowledge-based products.

7.2. Contributions

Overall, this was one of the first large-scale empirical studies of the relationship
between social network structure and success in open source software project
communities. In particular, it is the first known study to relate closure and lcader
centrality to success, and the second known study (after Grewal, et. al. 2006) to relate
bridging to success in open source project communities. [n the remainder of this section,

the specific contributions to theory, methodology, and practice are described.

7.2.1. Theory

This work contributes a social network perspective to the emerging theories of
open source software with respect lo governance, organization, and development
processes. In particular, the anomalous results point towards the consideration of artifact-
mediation and knowledge transfer reductions as possible elements which may ultimately
be synthesized with these new open source theories. Further, the work has connected
open source software research with team effectivencss research in terms of social capital

theory and leader centrality.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For team cffectiveness rescarchers and social network theorists, this work
provides an interesting counterpoint to well-tested concepts and theories. The results
suggest the presence of a paradigm disruption which may require the re-evaluation of
assumptions and new theory building cfforts with regard to theorics of workgroups and
the roles and effects of social network structures. In the domain of social network
rescarch, the disscrtation has extended the application of social network theory to a new
form of socio-technical activity and has applied the concept of core and peripheral
subgroups within the context of social capital theory.

Ultimately, though, the most significant iiicoretical contribution of this research
may not be in adding to any existing theory but rather in tracing the outlines for a new
theory - one which suggests that artifacts may substitute for social networks as mediators
of knowledge transfer. As noted by Weick (1989):

... the contribution of social science does not lie in validated knowledge, but

rather in the suggestion of relationships and connections that had previously not
been suspected, relationships that change actions and perspectives.

7.2.2. Methodology

The use of a two-year observation window following first software release date is
a methodological contribution which provides for a more controlled study population
with respect to project maturity. The study has also demonstrated the use of archival
statistics for defining and measuring social network structural variables, and has made a
connection between two important research databases which were not previously used in

tandem.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further contributions to social network analytical methodology include the
definition of two-mode density in the context of a priori subgroups. Even though two-
mode density is a basic social network concept that is often used in practice, it is not
commonly used in rescarch and there appears to be potential for further similar
applications. Also, the study applies the relatively new concept of class centrality in a
unique way, by using it to measure the centrality of a subgroup (administrators) as an

independent variable.

7.2.3. Practice

With regard to practice, the study will be useful to individuals and firms who
sponsor, manage, and/or parlicipate in open source software projects. [n a pragmatic
sense, the results of this work may provide practical measurement tools which can be
efficiently applied to pre-existing digital archives such as email, instant messaging and
online forums (Hinds and Lee Forthcoming). Even though social network structures
were not established as likely causes of success, the closure structure was noted to be an
important indicator of success, which makes it a uscful evaluation metric. Open source
software project administrators can use such measures to assess their own communities
and to determine if they have the right kinds of structures or if changes might be

necessary.

7.3. Limitations

It is recognized that the study population was limited to early-stage projects which

were targeted o developers and not sponsored by corporations. The results may not be

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generalizable 0o more mature projects and/or projects which are user-targeted or
corporate-sponsored.

With regard to the variable selection, it ts noted that the choice of bridging
variables was limited by the availability of data, and that more appropriate variables may
produce different results. In addition, the conversational networks are built from online
public forum records, and it is possible that there were other offline conversations among
project members which were not captured in the data. However, the norms of open
source software promote a high level of openness and transparency which may limit the
extent to which these offline conversations actually take place.

The choice of SourceForge as the sole rescarch setting is a limitation in that it is
possible that the projects hosted by SourceForge are not representative of the broader
population of projects which may be found on other hosting sites and/or which may have
their own hosting platform. Also, the extensive transparency associated with
SourceForge may not be representative of other hosting sites. However, SourceForge is,
by far, the largest of the available hosting platforms and SourceForge projects include a
wide variety of software types, application domains, and open source licenses.

With regard to the choice of research method, it is recognized that the usc of
historical statistics may result in reliability issues (Babbic 2005). Existing statistical
records arc usually kept for purposes other than research, and various changes can occur
in record-keeping methods, information processing systems, definition of fields, and so
forth. These matters are addressed by taking proactive steps to identify changes in
recording method and other changes which might affect data reliability. Fortunately, the

SourceForge foundation is well aware that they are the source of considerable research

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cfforts and, along with their open policy, they appear to be conscientious about
publishing their record-keeping methods and announcing any changes. These
announcements are carefully reviewed to determine the impact on data reliability and
other steps are taken to check the integrity of the data.

Finally, a cross-scctional study design normally results in ambiguity with respect
to the direction of the causal arrow between independent and dependent variables, since
time precedence cannot be established. Various conjectures were offered and their
implications regarding causal direction were discussed. However, as noted in that
section, these conjectures are not tested in this study and would require longitudinal

studies to more strongly support an argument of causality.

7.4. Future Rescarch Dircctions

A number of future research directions can be envisioned. In the short-term,
attempts to generalize the results of this work to other types of open source software
projects would be worthwhile. This would involve relaxing some of the restrictions
imposed by the study population definition and re-testing the hypotheses for projects of
different maturity levels, projects involving user-targeted software, and projects which
arc corporate-sponsored rather than community-based. Projects from host organizations
other than SourceForge should also be considered.

Because of the anomalous nature of the results, it is important that alternative
research methods be used to either confirm or refute the observed deviation from theories
of teams and social capital theories. This might involve more intensive field studies in

which a small number of project communitics are investigated in order to evaluate some

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the conjectures that have been offered but have not been empiricaily tested. These
studies can search for the presence of alternative forms of communication among project
developers. Also important is to further investigate the possible existence of two
different types of project communities, which may be the basis for the U-shaped
relationships that were observed.

With regard to theory building, the propositions suggested in Section 7.1.2 should
be further developed and elaborated into testable hypotheses. Various kinds of research
methods might be applied depending upon the nature of the hypotheses that are
suggested. In the short-term, these efforts would be focused on explaining the anomalous
results that were seen in open source software project communities. In the longer term, it
is possible that these efforts could be expanded to consider other types of virtual
development communities that may utilize open source methods and principles in
building a more general theory of collaborative development.

Finally, there appears to be significant potential in considering the role and impact
of technical artifacts with regard to the open source development process. Ongoing work
in socio-technical design research is associated with this type of study. [nitially, this
work might involve comparative studics of artifacts and their roles in the development
process, for example as in comparing a prominent open source software project with the
development of a non-software product such as the Wikipedia. More generally, there is
the potential to conduct design research studies which use laboratory and ficld
experimental methods to test the impact of different design strategies on the nature and

success of the development community that emerges.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF REFERENCES

Adamic, L. A. and B. A. Huberman (2000). "The nature of markets in the world wide
web." Quarterly Journal of Electronic Commerce 1: 5-12.

Ahuja, M. K. and K. M. Carley (1999). "Network structure in virtual organizations."
Organization Science 10(6): 741-757.

Allison, P. D. (1999). Multiple regression: a primer. Thousand Oaks, CA, Pine Forge
Press.

Almarzouk, M., L. Zheng, et al. (2005). "Open source: concepts, benefits and
challenges." Communications of the AIS 16: 756-784.

Axelsson, B. and G. Easton, Eds. (1992). Industrial networks: a new view of reality.
London, Routledge.

Babbie, E. (2005). The basics of social research. Belmont, CA, Thomson Wadsworth.

Balkundi, P. and D. A. Harrison (2006). "Ties, leaders, and time in teams: Strong
inference about network structure's effects on team viability and performance."
Academy of Management Journal 49(1): 49-68.

Barabasi, A.-L. (2002). Linked: the new science of networks. Cambridge, MA, Perseus
Publishing.

Barry, B. and R. Hardin, Eds. (1982). Rational man and irrational society. Beverly Hills,
CA, Sage.

Beal, D. J., R. R. Cohen, et al. (2003). "Cohesion and performance in groups: A meta-

analytic clarification of construct relations." Journal of Applied Psychology 88:
989-1004.

Benkler, Y. (2002). "Coase's penguin, or, Linux and the nature of the firm." The Yale
Law Journal 112(3): 369-446.

Benkler, Y. (2006). The wealth of networks: How social production transforms markets
and freedom. New Haven, Yale University Press.

Bessen, J. (2005). Open source software: free provision of complex public goods. MIT
open source working papers.

Bordieu, R. (1986). The forms of capital. Handbook of theory and research for the
sociology of education. J. G. Richardson. New York, Greenwood Press: 241-258.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Borgatti, S. P., C. Jones, et al. (1998). "Nelwork measures of social capital." Connections
21(2): 25-30.

Brooks, F. P. (1975). The mythical man-month: essays on software engineering. Reading,
MA, Addison-Wesley.

Brown, J. S. (1998). "Internet technology in support of the concept of "communities of
practice.” Accounting. Management, and Information Technologies 8: 227-236.

Brown, J. S. and P. Duguid (1991). "Organizational leaming and communities of
practice." Organization Science 2(1): 40-57.

Brown, J. S. and P. Duguid (2000). The social life of information. Boston, MA, Harvard
Business School Press.

Buchanan, M. (2002). Nexus: small worlds and the groundbreaking science of networks.
New York, W. W. Norton & Company.

Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge,
Mass., Harvard University Press.

Burt, R. S. (2001). Structural holes versus network closure as social capital. Social
capital: theory and research. N. Lin, K. Cook and R. S. Burt. New York, Aldine
De Gruyter: 31-36.

Capiluppi, A., P. Lago, et al. (2003). Evidences in the evolution of OS projects through
changelog analysis.

Carley, K. M. {1995). Computational and mathematical organization theory: perspective
and directions. 1995 Informs meetings in Los Angelcs, CA.

Carrington, P. J., J. Scott, et al., Eds. (2005). Models and methods in social network
analysis. Cambridge, Mass., Cambridge University Press.

Chengalur-Smith, S. and A. Sidorova (2003). Survival of open-source projects: a
population ecology perspective. Twenty-Fourth International Conference on
Information Systems.

Chesbrough, H. W. (2003). Open innovation: the new imperative for creating and
profiting from technolosy. Boston, Mass., Harvard Business School Press.

Christensen, C. M. (1997). The innovaltor's dilemma: when new technologies cause great
firms to fail. Boston, Mass., Harvard Business School Press.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coleman, J. S. (1988). "Social capital in the creation of human capital.” American
Journal of Sociology 94: $95-S120.

Conklin, M., J. Howison, et al. (2005). Collaboration using OSSmole: A repository of
FLOSS data and analyses. International Conference on Software Enginecring
Workshop on Mining Software Repositories, St. Louis, MO.

Crowston, K., H. Annabi, et al. (2004). Towards a portfolic of FLOSS project success

measures. The 4th Workshop on Open Source Software Engineering, Edinburgh,
Scotland.

Crowston, K., H. Annabi, et al. (2005). Effective work practices for FLOSS
development: A modecl and propositions. 38th Hawaii International Conference on
System Sciences - 2005, Hawaii.

Crowston, K. and J. Howison (2004). The social structure of free and open source
software development. Syracuse FLOSS Working Paper.

Crowston, K. and J. Howison (2006). “Hierarchy and centralization in free and open

source software team communications.” Knowledse. Technology. & Policy 18(4):
65-85.

Crowston, K. and B. Scozzi (2002). "Open source software projects as virtual

organizations: competency rallying for software development.” [EE Proceedings
Software 149(1): 3-17.

Cummings, T. G. (1978). Seif-regulating work groups: A socio-technical synthesis.” The
Academy of Management Review 3(3): 625-634.

Davila, T., M. J. Epstein, et al. (2006). Making innovation work: how to manage it.
measure it, and profit from it. Upper Saddle River, NJ, Wharton School
Publishing.

Dawes, R. (1980). "Social dilemmas." Annual Review of Psychology 31: 169-193.

Evans, D. S. and B. J. Reddy (2003). "Government preferences for promoting open
source sofiware: a solution in search of a problem." Michigan
Telecommunications and Technology Law Review 9: 313-394.

Everett, M. G. and S. P. Borgatti (1999). "The centrality of groups and classes." Journal
of Mathematical Sociology 23(3): 181-201.

ireeman, L. C. (2004). The development of social network analysis: a study in the
saciology of science. Vancouver, BC, Empirical Press.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fukuyama, F. {1995). The social virtues and the creation of prosperity. London, Hamish
Hamilton.

Gao, Y., V. Freeh, et al. (2003). Analysis and modeling of open source sofiware
community. North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2003.

German, D. and A. Mockus (2003). Automating the measurement of open source
projects. The 3rd Workshop on Open Source Software Enginecring, Portland, OR.

Gongla, P. and C. R. Rizzuto (2001). "Evolving communities of practice: [IBM global
services experience.” [BM Systems Journal 40(4): 842-862.

Granovetter, M. (1973). "The strength of weak ties." American Journal of Sociology 78:
1360-1380.

Granovetter, M. (1985). "Economic action and social structure: the problem of
embeddedness.” American Journal of Sociclogy 91(3): 481-510.

Grewal, R, G.L. Lilien, et. al. (2006). “Location, location, location: How network

embeddedness affects project success in open source systems.” Management
Science 52(7): 1043-1056.

Hackman, J. R. {1986). The design of work teams. The handbook of organizational
behavior. J. W. Lorsch. Englewood Cliffs, NJ, Prentice-Hall: 315-342.

Hahsler, M. and S. Koch (2005). Discussion of a large-scale open source data collection

methodelogy. 38th Hawaii International Conference on System Sciences - 2005,
Hawaii.

Hardin, G. (1968). "The tragedy of the commons." Science 162: 1243-1248.

Hardin, R. (1982). Collective action. Baltimore, The John Hopkins University Press.

Healy, K. and A. Schussman (2003). The ecology of open-source software development.
Working Paper: Departiment of Sociology. University of Arizona. URL:
http://www.opensource.mit.edu/papers/healyschussman.pdf.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual
communities. Handbook of Research on Socio-Technical Desion and Social
Networking Systems . B. Whitworth and A. de Mcor, to appear.

Howell, J.P., Dorfman, P.W., S. Kerr (1986). “Moderator variables in {eadership
research.” The Academy of Management Review [1(1): 88-102.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Howison, J. and K. Crowston (2004). The perils and pitfalls of mining SourceForge.
Mining Software Repositories Workshop, International Conference on Software
Engineering - 2004, Edinburgh, Scotland.

Hunt, F. and P. Johnson (2002). On_the Pareto distribution of SourceForge projects. Open
Source Software Development Workshop, Newecastle.

Huysman, M., E. Wenger, et al. (2003). Communities and technologies: proceedings of
the first international conference on communities and technologies; C&T 2003.
First international conference on communities and technologies; C&T 2003,
Kluwer Academic Publishers.

lannacci, F. (2003). "The Linux managing model.” First Monday 8(12).

Katzy, B. R. and K. Crowston (2000). "A process theory of competency rallying in
engineering projects.” Submitted to [EEE Transactions on Enginecering
Management.

Kauffman, S. (1993). The origins of order. Oxford, UK, Oxford University Press.

Kerr, S. and J. Jermier (1978). “Substitutes for leadership: Their meaning and
measurement.” Organizational Behavior and Human Performance 22: 375-403.

Kogut, B. and A. Metiu (2001). "Open-source soflware development and distributed
innovation." Oxford Review of Economic Policy 17(2): 248-264.

Kozlowski, S. W. J. and B. S. Bell (2003). Work groups and teams in organizations.
Handbook of psycholoey: Industrial and organizational psvchology. W. C.
Borman, D. R. llgen and r. Klimoski. New York, Wiley: 333-375.

Krackhardt, D. {(1999). "The ties that torture: Simmelian tie analysis in organizations."
Research in the Sociology of Organizations 16: 183-210.

Krishnamurthy, S. (2002). "Cave or community? An empirical examination of 100
mature open source projects.” First Monday 7(6).

Kuhn, T. S. (1996). The structure of scientific revolutions (third edition). Chicago, [L.
The University of Chicago Press.

Lacy, S. (2005). Open source - now it's an ecosystem. BusinessWeek Online.

Lakhani, K. R., B. Wolf, et al. (2002). Hacker Survey (release 0.3), Boston Consulting
Group.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lakhani, K. R. and R. G. Wolf (2005). Why hackers do what they do: understanding
motivation and effort in free/open source software projects. Perspectives on free
and open source software. J. Feller, B. Fitzgerald, S. Hissam and K. R. Lakhani.
Cambridge, MA, MIT Press.

Lanzara, G. F. and M. Morner (2003). The knowledge ecology of open-source software

projects. 19th EGOS Colloquium (European Group of Organizational Studies),
Copenhagen.

Lave, J. and E. Wenger (1991). Situated learning: lcgitimate peripheral participation.
Cambridge, MA, Cambridge University Press.

Lee, G.K. and R.E. Cole (2003). “From a firm-based to a community-based mode! of

knowledge creation: The case of the Linux kernel development.” Organization
Science 14(6): 633-649.

Lerner, J. and J. Tirole (2002). "The simple economics of open source.” Journal of
industrial Economics 52: 197-234.

Lessig, L. (2001). The future of ideas. New York, Random House, Inc.

Lin, N. (2001). Building a network theory of social capital. Social capital: theory and
research. N. Lin, K. Cook and R. S. Burt. New York, Aldine De Gruyter: 3-29.

Lomi, A. and P. Pattison (2004). "Introduction to the CMOT special issue on
mathematical representations and models for the analysis of social networks

within-and-between-organizations-Computational-and-Mathematical

Organization Theory 10: 5-15.

Luhmann, N. {1984 (translated 1995)). Social Systems. Stanford, CA, Stanford
University Press.

Luri, J.S. and M.S. Raisinghani (2001). “An empirical study of best practices in virtual
teams.” Information & Management 38: 523-544.

MacCormack, A., J. Rusnak, et. al. (2006). “Exploring the structure of complex software

designs: An empirical study of open source and proprietary code.” Management
Science 52(7): 1015-1030.

Madey, G., V. Freeh, et al. (2002). The open source software development phenomenon:
an analysis based on social network theory. Eighth Americas Conference on
Information Systems, Dallas, Texas.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Madey, G., V. Freeh, et al. (2004). Modeling the free/open source sofiware community: a
quantitative investigation. Free/open source software development. S. Koch.
Hershey, PA, 1dea Group: 203-220.

Malone, M. and W. Davidow (1992). Virtual corporation. Forbes 150: 102-107.

March, J. G. (1991). "Exploration and exploitation in organizational learning."
Organization Science 2(1): 71-87.

Markus, M. L., B. Manville, et al. (2000). "What makes a virtual organization work?"
Sloan Management Review 42: [3-26.

Mertler, C. A. and R. A. Vannatta (2005). Advanced and multivariate statistical methods.
Los Angeles, CA, Pyrczak Publishing.

Moreno, J. (1934). Who shall survive? New York, Beacon Press.

Morner, M. (2003). The emergence of open-source software projects: how to stabilize
self-organizing processes in emergent systems. Autopoietic organization theory:
drawing on Niklas Luhmann's social system perspective. T. Bakken and T.
Hernes. Oslo, Copenhagen Business School Press: 259-271.

Mowshowitz, A. (2002). Virtual organization: toward a theory of societal transformation
stimulated by information technology, Quorum Books.

Muffatto, M. and M. Faldani (2003). "Open source as a complex adaptive system."
Emergence 5(3): 83-100.

Nahapiet, J. and S. Ghoshal (1998). "Social capital, intellectual capital, and
organizational advantage.” Academy of Management Review 23(2): 242-266.

Qbstfeld, D. (2005). "Social networks, the tertius iungens orientation, and involvement in
innovation." Administrative Science Quarterly 50: 100-130.

Oh, H., M.-H. Chung, et al. (2004). "Group social capital and group effectiveness: The
role of informal socializing ties.” Academy of Management Journal 47: 860-875.

Olson, M. J.-(1965). The logic of collective action. Cambridge, MA, Harvard University
Press.

O'Reilly, T. (1999). "Lessons from open-source software development.” Communications
of the ACM 42(4): 32-37.

OSI (2004). The open source definition, Open Source Initiative; URL:
http://www.opensource.org/docs/definition.html.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pavlicek, R. C. (2000). Embracing insanity: open source sofiware development.
Indianapolis, IN, Sams.

Putnam, R. D. (2000). Bowling alone: the collapse and revival of American community.
New York, Simon and Schuster.,

Raymond, E. S. (1998). "FHomesteading the noosphere.” First Monday 3(10).

Raymond, E. S. (1999). The cathedral and the bazaar: musings on Linux and open source
by an accidental revolutionary. Sebastopol, CA, O'Reilly & Associates, Inc.

Rothfuss, G. J. (2002). A framework for open source projects. Department of Information
Technology. Zurich, Switzerland, University of Zurich: 157.

Savannah (2005). URL: hitp://savannah.gnu.org/.

Scacchi, W. (2002). “Understanding the requirements for developing open source
software systems.” IEE Software Proc. 149(1): 24-39.

Schenkel, A., R. Teigland, et al. {2000). Theorizing communities of practice: a social
network approach. Academy of Management: Organization and Management
Theory Division.

Scott, J. (2000). Social network analysis: a handbook (second edition). London, Sage
Publications.

Scozzi, B., K. Crowston, ct. al. (2008). Shared mental models among open source
software developers. 41st Hawatii [nternational Conference on System Sciences -
2008, Hawalii.

Simon, H. A. (1976). Administrative behavior (3rd edition). New York, Free Press.

SourceForge (2005). URL: http://www.sourceforge.net.
Stallman, R. (1985). The GNU Manifesto. URL: hitp://www.gnu.org/gnu/manifesto.html.
Stewart, K. J. and T. Ammeter (2002). An exploratory study of factors influencing the

level of vitality and popularity of open source projects. Twenty-Third
International Conference on Information Systems.

Strader, T. J., F.-R. Lin, et al. (1998). "Information infrastructure for clectronic virtual
organization management." Decision Support Systems 23: 75-94.

Sturmer, M. (2005). Open source community building. MIT Open Source collection.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabachnick, B.G. and Fideli, L.S. (2007). Using multivariate statistics. Boston, MA,
Pearson.

Teigland, R. (2003). Knowledge networking: structure and performance in networks of
practice. Institute of International Business. Stockholm, Stockholm School of
Economics.

Trombly, M. (2005). Open source may help China curb software piracy. CIO Insight.
UCINET (2005). URL: http://svww.analytictech.com/ucinet.hum.

von Hippel, E. (2001). "Innovation by user communities: learning from open-source
software." MIT Sloan Management Review 42(4): 82-86.

von Hippel, E. and G. von Krogh (2003). "Open source software and the "private-
collective" innovation model: issues for organization science.” Organization
Science 14(2): 209-223.

von Krogh, G. (2003). "Open-source sofiware development." Sloan Management
Review: 14-18.

von Krogh, G., S. Spacth, ct. al. {2005). Knowlcdge reuse in open source software: An
exploratory study of {5 open source projects. 38th Hawaii International
Conference on System Sciences - 2005, Hawaii.

von Krogh, G and E. von Hippel (2006). “The promise of research on open source
software.” Management Science 52(7): 975-9S3.

Wagstrom, P. A. (2004). Toward a simulation model of open source sofiware
development. NAACSOS, Pittsburgh, PA.

Wagstrom, P. A., J. D. Herbsleb, et al. (2005). A_social network approach to free/open
source software simulation. First International Conference on Open Source
Systems, Genova.

Wasko, M. M. and R. Teigland (2002). The provision of online public goods: examining
social structure in a network of practice. Twenty-Third International Conference
on Information Systems - 2002.

Wasserman, S. and K. Faust (1994). Social network analysis: methods and applications.
Cambridge, UK, Cambridge University Press.

Waltts, D. J. (2003). Six degrees: the science of a connected age. New York, W. W.
Norton & Company.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Webb, E. J., D. T. Campbell, ct al. (2000). Unobtrusive measures. Thousand Oaks, CA,
Sage.

Weber, S. (2003). Open source soflware in developing cconomies. Social Science
Research Council Working Paper.

Weber, S. (2004). The success of open source. Cambridge, Mass., Harvard University
Press.

Weick, K. E. (1989). “Theory construction as disciplined imagination.” Academy of
Management Review 14(4): 516-531.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity.
Cambridge, UK, Cambridge University Press.

Wenger, E., R. McDermott, et al. (2002). Cultivating communilies of practice: a guide to
managing knowledge. Boston, Mass, Harvard Business School Press.

West, J. and S. O'Mahony (2005). Contrasting community building in sponsored and
community founded open source projects. 38th Hawaii International Conference
on System Sciences - 2005, Hawaii.

Xu, J., Y. Gao, et al. (2003). A topological analysis of the open source software
development community. 38th Hawaii International Conference on System
Sciences - 2005, Hawaii.

Yamauchi, Y., M. Yokozawa, et. al. (2000). Collaboration with lead media: How open
source software succeeds. ACM 2000 Conf. Comput. Supported Cooperative
Work, Philadelphia.

Yang, H. and J. Tang (2004). “Team structure and team performance in 1S development:
A social network perspective.” Information & Management 41: 335-549.

Ye, Y., K. Nakakoji, et al. (2005). The co-evolution of systems and communities in free
and open source software development. Free/open source software development.
S. Koch. Hershey, PA, Idea Group Inc (1GI): 59-82.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES

Appendix A

Sourceforee.nct screen images

This appendix contains screen images obtained from the SourceForge.net web site.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sourceforge.net screen images

Figure A-1
SourceForge Project Home Page Summary Screen

fearcrioege et frapctirmian

) PeforStxt

Q,

Leeatis - Lovele Agean X

Ten Wy AP

Qein Soutcee SUA Platiorns
LegBiaze FUSE «(n S04 n3w Fae il le flapet.
oraduitéoaniaad

wenactiare.onin
£asydonpsr 0.6 Reledse 3335

Conlrel yulit Vel bervicas

Fous and Gt £1odleins quidly w2 Muutre el SCAPyoupe.
Hews giihne Fraa connioad
iy ton gt g

Henarale SOAP Chents

Renetate & 0 532F, WaDL L TestDetisg.
Edsrte-use Fean Trial

WenN ARsvaunm

Source URL: hittps://sourceforoe.net/projects/easysoap

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sourccforge.net screen images

Figure A-2

SourceForge Project Home Page Project Details and Public Arcas

S5v @ e (6L

AR AR 2 g o SNV i T
£asy10-usa biea Toal -
v R23sa nem

Bugs - (18 opea s 34 tetay
Bug Trackng System

Project Adumms © duinéey /7 ¢
Deslageis 1 <

Parshes 1 {3 open / 20 taal}

Patzh Tracking System Dwelopiment Status - %« Bt

Enature Pesunsts, (8 apen £ 22 1ol Intended Aucience * Devalopers

Fasus Requast Teacking System .

Liconzg : GHUL Brary of Legser Generat Puthic Liceaze iLALY

1 Fubuc Fersma 1 {339 messages in ¢ foums} .
b AP . . Oporatungs System 125 KIS Wintows (WD ICCONFS Al 2.6t RIS Wundoes {99986T/Z000AP) Al FOSIX

tating List | (3 total) Lo BSHUN ke OZ655 Liang, SWm2¥, WaakP

CYS Ropaalany | (SIAGCHCR Corpally ugasiiatis) Progsamming Language * Ces
Browse €93

Topea * VASVERITP Obyert Rraxadirg

Teanstanans - Engush 4

(Edt Picject VRIS raoe - e335y22ap B

Gess ' Regutered . 20910121 21 21 i
Seuinetizit Actity Percentile {last woehy. 78 61

RETOANRSSE T ROF 7 AMom Nowgroadar Vi pro;act dcttty staistics

Blaniie) Yiow ket ef RS trede avalable tor this pigject

Source URL: hitps://sourcetoree.net/projects/casysoap

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sourceforge.net screen images

Figure A-3
SourceForge Project Member Page

fre g et 1P Dpect M kL FTTZ O 6 M e 1003

7| Trefox St
N OW-W-MMM-WW treahemat Jrwalethers ~PriveGrabber - Jobe

AN Y

A5 ary o St o Lasy Va0 s s Membary

EasySoapee

ro Pago | Feema | Tocker | Bugs § P

Samnary { Adrin [+

stenes | Faatore Beguests | Mad | Tasws | Soreenzhots { e QY3 | Files

1 you would hie to ¢antnbuty to s prejest by becoromg & dedcper, tunlact ene of he gedjest adirins, dyiignated in beld leat butos

Developer Usernams RotefPosition Email skills

1 David Crowley drrowley T Projoct Manaqor darovisy at usors spurcefoga.net Fnvate
Chetan Sabms wrymag Developer Inghy iy 8t usels satrceivtge nat Frvat
James Goslick igosick Noc Vinter joothek at usars soucetarge net Prvnle
Dlaise St.Laurent kingmab QOevelcper kingmok at users sourcefarge nel Pavate

AleiToncaforge ~el -t ISTG vy Soaterenl TomsalVet Aeotse ISupud

Fowered by 126 Sou CalBpal CEOMIN € SETONT MO ERVIONEN: FLm VA S2fware
TCezyng™ 2006+ GLTG Open Saures TCSnak(y Group. 43 Rahls Restrved

i

Source URL: https://sourceforec.net/project/memberlist.php?eroup id=19009

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sourceforee.net screen images

Figure A-4

SourceForge Project Forum Page Topic Listing

Lagin . Creste ALcouny

OF rete Ay 2 Earydenges s Blrum

EasySoap++ ‘ ELE RO AT wis |

Su:mr:m;l-r‘dmmi Hame P.lgv“l::ﬁv::lrlrl::; Tracker | Bugg { Faiches | Featury Requests | Wt | Taske | Sereenchoto | Hows | CYS | Filey i Lpeaanest

Discussion Forums: Open Discussion

Admhy

[opmtramion V| Usma ¥

Tople Toplc Starter Replles Last Post

0 Segmentation Faul it no namespace gioods 1 2002-084-17 16:23

1 Dnas 0.6 work with NET) : sameov 1 2002:04.14 21:00

0 SSL certiicate verificaion dcalo 1 2002-04-03 05.09

¢ Centdicates in SSL conedtion deato i 2002-03-215 14,03

) SNAP20AMaY S bugay?? monkiki 2 2002-02.2122:54

O GUIApp Sclutions Samcov 3 2002.02.2122.43

O UTF.8inhcaders sameav 1 2002-02.1¢ 22.04

O WEDLISAM) 1eediek 2 2001.12.28 12:06

£ Re EasySoap i Windows Gill App sameoy [¥] 2001-12.23 22:22

O G 0oes notwork on 1S sameov 2 2001.12-0519:48

0 When st decumet caiyy Q 2001-11.22 21:50 ¥
Done

Source URL: htips://sourceforee.net/forum/forum.php?forum id=60193

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* sowefxparet £,

4l

Sourceforge.net screen images

Figure A-5

SourceForge Project Forum Page Discussion Text

@ serngstarte? £ Lajestreatres () Feckoa Start
IR i
Tl Pimn

i EasySoap++ 7 =) seevy - acinn: a8t (5

Summane | Admen | kema Pane | Foroms | Trazka: [Buad | Paches | Fearue Reqaaeis § had | Taska | Setaensnzts {Tins 10VE |Fies

Discussion Forums: Open Discussion
Admin :

By; Frandsco Jos? Avla » monkiki
DSCAP2DATayis buguv?? -
2001-08-11 08:22

The XML genetated by EasvSoaot+ is not compatble wih the Apache SOAP implementation, Whithis the nght SOAP complant implemantation? thunk (hat the good
implemeninion is EAsySoaps+, isnlit?
Why a 2DArray and not a nDHATay? 1 dant know why 1 can get a n-dimensional array. What happend i §nee¢ a 3D anray?

Thanks inadvance.

By, David Crovdey - dorowiey ~ ¥
LYRE: SCAP2DAfay is bugy??
200%-09-1109.01

The serializalion for he 20 anay is cotrect, as confirmed hy ny interop testing A few things 10 Consider.

13 The Apache implementation may be wrong.
2) 20 Ammay I= Array of Arrays

About an H.0imensional armay, Feel free 16 implement it yourselt and fest tree to guit cemplaining aboxs: the functionality | de pravice

Source URL:
https://sourceforge.net/forum/forum.php?thread id=1254140&forum_id=60193

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sourceforee.net screen images

Figure A-6

SourceForge Project Statistics Page

Ere

& o

D B IR e rpi

ek |

@ Gotong Strimd (12 Lalmt meacsces T Frofac St ’.} Image Yarabn: Catos }

e e e e e T e o i Stitltios For ERiy 03+ e s+ e e o e e s
Project Hels VrafCle Duwluads

“ ™ 1
- e o
§ » " w i
3 20 -
2 2 £ T 8 23 %%
H fieiigids
| = g + 20 @ TR [Toiees e |
Sourcef onpa.net rafTic Tracker Activity
e “ 2000

e

reusnag)
Etries/anth
[TRTITIL

¥
ol
3 3% 3w eI T T T cT 2L
- EEEEEEE HES
[C sriewe rasee T Fooar paves | o el E e = I ol |
Cler 0 3792n 92 mzvw Jate
Date (UTC) Rank Total Pages * Downloads Project Web Hits Tracker opened [closed) Forum Posts
Feb 2008 " 42843 1,297 101 11,235 0 0
Jan 2008 40639 2311 186 1794 0 0
Dec 2007 31,004 1097 122 24,128 0(0) 0
Naov 2007 a7214 2508 158 28817 0 3
— aTn. A TAL. DAY i o L3

Source URL:
https://sourceforge.net/project/stats/?group_id=1 9009 & uen=casysoap&lype=&mode=allt

me

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

University of Notre Dame Research Database

SourccForge.net Rescarch Data

SourceForee.net is the world's largest Open Source software development web site, with
the largest repository of Open Source code and applications available on the Internet.
Owned and operated by OSTG, Inc. ("OSTG"), SourceForge.net provides free services to
Open Source developers. The SourceForge.net web site is database driven and the
supporting database includes historic and status statistics on over 140,000 projects and
over 1.5 million registered users' activities at the project management web site. OSTG
has shared certain SourceForge.net data with the University of Notre Dame for the sole
purpose of supporting academic and scholarly research on the Free/Open Source
Software phenomenon. OSTG has given Notre Dame permission to in turn share this data
with other academic researchers studying the Free/Open Source Software phenomenon.

Source URL: http://www.nd.cdu/~oss/Data/data. html

Release of the SourccForge.net Rescarch Data

To advance the understanding of, and research on, the Free/Open Source Software
phenomenon, portions of the data that may support such research, will be made available
to academic or scholarly researchers. All requests for data must be submitted in writing
{e-mail) to the Notre Dame PI, (Greg Madey). Only academic and scholarly researchers
are eligible to receive the data. To receive the data, a short guestionnaire and agreement

must be completed, signed and returned. A wiki for users of the research data is available
here.

Source URL: hitp://www.nd.edu/~oss/Data/data.html

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Notre Dame Research Database

Description of Data Available

SourceForge.net uses relational databases to store project management activity and
statistics. There are over 100 relations (tables) in the data dumps provided to Notre
Dame. Some of the data have been removed for security and privacy reasons.
SourceForge.net cleanses the data of personal information and sirips out all OSTG
specific and site functionality specific information. On a monthly basis, a complete dump
of the databases (minus the data dropped for privacy and security reasons) is shared with
Notre Dame. The Notre Dame researchers have built a data warehouse comprised of
these monthly dumps, with each stored in a separate schema. Thus, each monthly dump is
a snapshot of the status of all the SourceForge.net projects at that point in time. As of
March 2007, the data warehouse was almost 500 GBytes in size, and is growing at about
25 GBytes per month. Much of the data is duplicated among the monthly dumps, but
trends or changes in project activity and structure can be discovered by comparing data
from the monthly dumps. Queries across the monthly schema may be used to discover
when changes took place, to estimate trends in project activity and participation, or even
that no activity, events or changes have taken place. To help researchers determine what
data is available, an ER-diagram and the definitions of tables and views in the data
warehouse are provided.

Source URL: http://www.nd.edu/~oss/Data/data.html

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Libresoft Project Research Database

Libre Software Engineering

Welcome to the Libre Software™ Engineering web site at the Grupo de Sistemas y
Comunicaciones (System and Communication Group, GSyC) at the Universidad Rey
Juan Carlos located in Mostoles, near Madrid (Spain).

Libre Software offers Software Engineering scientists the possibility not only of having a
closer look at the product that is being created, but also of studying in detail the whole
development process and its technical, social and economic consequences.

The main research topic at the Universidad Rey Juan Carlos is the quantitative
measurcment of libre software development patierns and characteristics in order to gain
knowledge on the process, mainly by studying the different agents that participate in it,
the use of the different development and development-supporting tools as well as the
methods that have been followed. The main focus is technically oriented having
principaily an engineering perspective of the rescarch area in contrast to other research
groups which are primarily centered on social and economic aspects.

NEWS: We also drive the FLOSS Rescarch Planet which syndicates other research
blogs from researchers who investigate libre software.

Source URL: http://libresoft.cs/description

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Detailed Reeression Results

This appendix contains tables with detailed results of regressions which produced
a significant result (p < .05). These regressions are referred to in Tables 20, 21, and 22,

and in the corresponding subsections of Section 5.4.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Detailed Reuression Results

Table D-1

Log-Transformed Software Downloads Regressed on Group Density,
Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Mode! |
Group Size Ol4%EE - (002)
Corc Sizc .003 (.021)

Conversation Volume -001* (.000)
Group Density

Group Density
mean-centered and squared

R® 324
F-Statistic 27,184k
Adjusted R? 300

AR®
AF-Statistic

Standard crrors arc in parentheses
*p<.,05; *¥p<.0l: ®Hp<00];

Tp=.098

Modcl 2

000%*% (.002)
001 (.020)
000 (.000)

-5.547%% (1.237)

410
23.952%#*

393

086
20.106

n = 143 groups

189

Model 3
007+ (,003)
-001 (.020)
.000 (.000)
-8.881%%% (2,349)

163757 (9.827)

421
19.963%%#

400

012
2777

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Detailed Regression Results

Table D-2

Log-Transformed Page Views Regressed on Group Density,
Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Cocfficients)

Variables Model 1
Group Size O11#+ (,002)
Core Sizc 042 (.021)

Conversation Volume .000 (.000)
Group Density

Group Density
mean-centered and squared

R? 291
F-Statistic 19.019%**
Adjusted R’ 276

AR?
AF-Statistic

Standard errors are in parenthescs

*p<.05; **p<.0]; <001

Model 2
007%% (.002)
040" (.020)
.000 (.000)

-4.871#%* (1.285)

358
19.233%x*

339

067
14,382

n = 143 groups

Modcl 3
005" (.003)
038" (.020)
.000 (.000)
-8.353*%% (2.439)

17.0977 (10.203)

371
16.150%**

348

013
2.808

T p =.053 (Model | Core Sizc), .053 (Model 2 Core Size), .057 (Model 3 Group Sizc)

1 p =.064 (Modc! 3 Core Size), .096 (Model 3 Group Density mean-centered and squared)

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Detailed Regression Results

Table D-3

Log-Transformed Software Releases Regressed on Core Density,
Controlling for Group Size, Core Size and Conversation Volume

(Unstandardized Cocfficients)

Variables Modecl |
Group Size -.001 (.002)
Corc Sizc -.026 (.021)

Conversation Volume .000 (.000)
Corc Density

Corc Density
mean-ccntered and squared

R? .039
F-Statistic 1.876
Adjusted R? 018
AR?

AF-Statistic

Standard crrors arc in parentheses

*p<.05; **p<.0l; ***p<.000;

Modcl 2
002 (.002)
-044% (.022)
001% (.000)

S570% (261)

071
2.641*

.044

032
4,781

n = 143 groups

p =.050 (Modcl 3 Core Size), .069 (Modcl 3 F-Statistic)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Model 3

-.002
-.044"
001*
-615

121

071

(.002)
(.022)
(.000)
(412)

(.855)

2.102°

037

.000
.020

Detailed Regression Results

(Unstandardized Coefficients)

Variables Model]
Group Sizc Ol 1#+% - (002)
Core Sizc 0427 (.021)

Conversation Volume 000 (.000)
Corc Density

Core Density
mcan-centered and squared

R? 291
F-Statistic 19.019%#*
Adjusted R 276

AR?

AF-Statistic

Standard crrors arc in pareniheses
*p<.05; *Fp<.0l; **p<00l;

tp=.053

Table D-4
Log-Transformed Page Views Regressed on Core Density,
Controlling for Group Size, Core Size and Conversation Volume

Model 2

.033

.000

-.267

296

(.002)
(.023)
(.000)

(.272)

14.502%%

276

.005
964

n =143 groups

192

Model 3

O (.002)

036 (.023)
.000 (.000)
S97T* (422)

1.910% (877)

319
12,8647

295

.024
4.741

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Delailed Regression Resultls

Table D-5
Log-Transformed Code Commits Regressed on Administrator Membership Degree,
Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Modcl 1 Modge! 2 Modcl 3
Group Size -005% (.003) -005" (.003) -006* (.003)
Corc Sizc 059% (.029) 059% (.029) 060* (.029)
Conversation Volume 001 * (.000) 001#* {(.000) .001# (.000)
Administrator

Membership Degree 022 (.063) 212" (o)
Administrator

Membership Degree -.040% (.019)

mean-centered and squared

R’ .052 .053 082
F-Statistic 2.564" 1.941 2.455%
Adjusted R 032 026 049
AR? 001 029
AF-Statistic 120 4324

Standard crrors are in parenthescs
*p<.05; **p<0l; **¥p<.000; n = 143 groups
+ p=.073 (Mode! 1 Group Sizc), .073 (Modcl 2 Group Sizc)

¥ p=.057 (Model 3 Administrator Membership Degree), .057 (Model | F-Statistic)

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Detailed Regression Results

Table D-6
Log-Transformed Software Releases Regressed on Administrator Class Centrality,
Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1. Modcl 2 Model 3

Group Size -.001 (.002) .002 (.002) 002 (.002)
Core Size -.026 (.021) -.010 (.021) -011 (.021)
Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Administrator
Class Centrality 963*%F (.326) L90* (.35%)

Administrator
Class Centrality -515 (1.026)
mean-ceniered and squared

R? 039 096 098
F-Statistic 1.876 3.660%* 2.963%
Adjusted R 018 070 065
AR? 057 002
ATF-Statistic 8.701 252

Standard crrors arc in parcntheses

*p<.05; *p<.0l; *Fp<.001; n = 143 groups

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Detailed Regression Results

Table D-7
Log-Transformed Page Views Regressed on Administrator Class Centrality,
Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Modeil 2 Modcl 3
Group Sizc 011 (.002) S0 (L002) 01 1##%(002)
Corc Size 042" (021) 0387 (.022) 042 (022
Conversation Volume .000 (.000) .000 {.000) .000 (.000)
Administrator

Class Centrality -247 (.346) .084 (.373)
Administrator

Class Centrality 2.347% (1.069)

mean-centered and squared

R? 291 294 318
F-Statistic 19.019%#* 14,342k 12.756%#%*
Adjusted R? 276 273 293

AR? .003 024
AF-Statistic 511 4.822

Standard crrors arc in parcntheses
tp<.05; *p<.0l; ¥ p<.000; n =143 groups

 p =.053 (Model | Core Sizc), .090 (Model 2 Core Size), .059 {Model 3 Corc Sizc)

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1972

1973

1974 — 1980
1980 — 1983
1983

1983 — 1985
1985 — 1988
1988 — 1998
1998 — 2002
2003 — 2008

VITA

DAVID HINDS

B.S., Engineering Science
University of Miami

Miami, Florida

M.S., Management Science
University of Miami

Miami, Florida

Metro Dade County Transportation
Cordis Corporation

M.B.A.

Florida International University
Miami, Florida

Cordis Bio-Synthetics, Inc.
Deloitte Haskins and Sells
Trend Distributors

The Wurth Group

Doctoral Candidate

Business Administration
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Franceschi, K., Lee, R. M. and Hinds, D. (January 2008). “Engaging e-learning in virtual
worlds: supporting group collaboration.” Presented at the 41*" Hawaii International

Conference on System Sciences.

Hinds, D., Roark, A., Schimpeler, C., and Corradino, J. (1978). “Transportation modeling
in a changing world: a Miami case study.” Transportation Planning and Technology 4:

125-135.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hinds, D. (1979). “RUCUS scheduling software: A comprehensive status report and
assessment.” Transit Journal 5(1): 17-34.

Hinds, D. (2004). "Micropayments: a technology with a promising but uncertain future.”
(short note inciuded in "Mobile banking services” by Niina Mallat, Matti Rossi and Virpi
Tuunainen). Communications of the ACM 47(5): 44.

Hinds, D. (2004). “Critical mass behavior and transaction costs in open source and open
content projects.” North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2004, Pittsburgh, PA (CMU).

Hinds, D. (2005). “Open web learning - achieving creative synergy in the open
development and use of e-learning resources.” 7th [nternational Conference on
Enterprise Information Systems - Doctoral Consortium, Miami, Florida.

Hinds, D. and Lee, R. M. (2006). “Why do some open source software projects succeed
while others fail? Group centrality constructs as predictors of project outcome.”
International Sunbelt Social Network Conference XXVI, Vancouver, British Columbia.

Hinds, D. and Lee, R. M. (January 2008). “Social network structure as a critical success
condition for virtual communities.” Presented at the 4/% Hawaii International
Conference on Systen Sciences.

Hinds, D. and Pasztor, A. (August 2008). “What’s wrong with our concept of
knowledge? A case of semantic pathology.” To be presented at the 2008 Academy of
Management Annual Meeting, Anaheim, California.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual
communities. Handbook of Research on Socio-Technical Design and Social Networking
Svstems, Edited by Whitworth, B. and de Moor, A., to appear.

Lee, R. M., Dominguez, C. E., Franceschi, K. and Hinds, D. (2006). “Mitigating culture
shock: e-learning cultural affordances.” 2nd Workshop on Tourism and ICT: Dynamic

and Intelligent Configuration of Tourism Services, University of Twente, Enschede, The
Netherlands.

O'Neil, B. F., Catanese, A. J. and Hinds, D. (1978). Transportation systems. Handbook of
Operations Research: Models and Applications. J. J. Moder and S. E. Elmaghraby. New
York, Van Nostrand Reinhold Company. 2: 477-502.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

