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Berry-Esseen Bounds for Studentized Statistics by Stein’s
Method

Zhang Kan

Department of Mathematics

Abstract

The Stein’s method, originally introduced by Stein (1972), gives us a novel way
to investigate normal approximation. This method has since been developed in
different areas and can be applied to different distributional approximations. It
is a very powerful tool to estimate the absolute error of approximations and also

the relative error.

In this thesis, we establish the uniform and non-uniform Berry-Esseen bound
for a class of Studentized statistics via Stein’s method. In particular, we re-
cover the optimal results for Student’s t-statistics, Studentized U-statistics and

Studentized L-statistics.

viil



Chapter 1

Introduction

Let Xy, Xy, ..., X, beindependent random variables and let 7" := T'(X;, ..., X},)
be a general sampling statistic of interest. Assume that when n goes to infinity,
T converges to a standard normal distribution so that the normal law can be
used to approximate a p-value of a hypothesis test. However, even though in
practice sample sizes may be large, the normal approximation may not be accu-
rate caused by other factors. Thus, it is important for us to evaluate the quality
of the normal approximation by estimating the Kolmogorov distance between
the distribution function of 7" and normal distribution function or the ratio of

the two tail probabilities.

The main contribution of this thesis is to evaluate the absolute error sup, g |P(T" <
z) — ®(z)| via Berry-Esseen type bounds. Suppose T is a linear statistic plus an

error term, say, 7' =W + A, where
W= &= X)), A=AX,... X,)=T-W
i=1 i=1

Here g; := g,; are Borel measurable functions.



Assume that
E&=0fori=1,2,...,n, and > E& =1 (1.1)
i=1
It is clear that if A — 0 in probability as n — oo, then the central limit theorem

sup |P(T < z) — ®(z)| — 0,

z€R

holds provided that the Lindeberg condition is satisfied, i.e.

Ve>0, Y BEI(&]>e) —0.
=1

Here and throughout the following, we let ® denote the standard normal distri-

bution function, that is,

®(z) = (2m)~1/2 / e P24t Va e R.

—00

In the realm of normal approximation for independent random variables, the
classical approach is the so-called Fourier transform method. However, when it
comes to dependent random variables, this approach may not work well. Stein
(1972) introduced a novel method to get the bounds on distance between a s-
tandard normal distribution and the distribution of a sum of dependent random
variables. This method provides a new way to prove the central limit theorem,
and more importantly, it gives the convergence rate at the same time. This
method is now known as Stein’s method, which has been extensively studied
and well developed during the last two decades. In addition, the method has
been extended to Poisson and compound Poisson approximations, exponential
approximation, multivariate, combinatorial and discretized normal approxima-

tions.

Due to statistical considerations, Chen and Shao (2007) proved the following
uniform and non-uniform Berry-Esseen bounds for a class of non-linear statistics.

Recall that & = g,,:(X;), put
Br=Y E{&I(&G|> 1)}, Bs= > {BIGPI(&] < 1)},
=1 =1

2



and let 0 > 0 satisfy
> E{&| min(s, &)} > 1/2. (1.2)
i=1

For each 1 < ¢ <, let A; be a random variable such that X; and (A;, W — &)

are independent. Then for any p > 2,

sup | P(T < o) — ®(x)| < 6.1(By + B3) + EIWA| + > E|G(A - Ay)| - (1.3)

x€ER i=1
and

|P(T < 2) — ®(z)| < 7o+ e 37, forall z € R, (1.4)

where

Yo = P(AI> (Jz] +1)/3) +2)  P(I&] > (2] +1)/(6p))

i=1

+eP (1 + x2/(36p))_pﬁg,

T = 225+ 8.6[A+3.6>  [IGl2llA — Ayl

i=1
The general results have been successfully applied to obtain optimal Berry-Esseen

bounds for U-statistics, multi-sample U-statistics, L-statistics, and random sums.

However, the general results of standardized statistics are not enough. It is also
important to obtain similar Berry-Esseen type bounds for Studentized version of
T, under the assumption of asymptotic normality. This is because in statistical
inference studentized statistics are commonly used since non-studentized statis-
tics often involve some unknown nuisance parameters. A prototypical example is
Student’s t-statistic, whose high degree of robustness against heavy-tailed data
has been quantified in recent years. The main purpose of this thesis is to es-
tablish uniform and non-uniform Berry-Essend bounds for a class of Studentized

non-linear statistics, including Studentized U-statistics and L-statistics.

This thesis is organized as follows. Chapter 2 contains a brief introduction of
Stein’s method, including Stein’s equation, properties of the solutions and con-

struction of Stein identities for sums of independent random variables. Chapter
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3 presents the main theorem, Theorem 3.1, on uniform and non-uniform Berry-
Essend bounds for Studentized non-linear statistics. A detailed proof of the main
theorem is given in Chapter 4. In Chapter 5, we specialize Theorem 3.1 to some
well-known and widely applicable statistics, such as Student’s t-statistics, Stu-
dentized U-statistics and Studentized L-statistics. Finally, we end up in Chapter

6 with a conclusion on both current and future work.



Chapter 2

Stein’s Method

2.1 A Brief History of Stein’s Method

The classical approach to study Central Limit Theorem relied heavily on Fouri-
er method. The Fourier methods work well for sums of independent random
variables. Stein (1972) initiated a novel method to obtain a bound between the
distribution of a sum of m-dependent sequence of random variables and a stan-
dard normal distribution in the Kolmogorov metric. This method is now called
Stein’s method. Stein’s method is a powerful tool because it works not only for
independent random variables but also for dependent random variables. It can
prove the central limit theorem and give bounds for accuracy of approximations
at the same time. Extensive applications of Stein’s method to obtain uniform
and non-uniform Berry-Esseen bounds for independent and dependent random
variables can be found in, for example, Diaconis (1977), Baldi, Rinott and Stein
(1989), Barbour (1990), Dembo and Rinott (1996), Goldstein and Reinert (1997),
Chen and Shao (2001, 2004, 2007), Chatterjee (2008), and Nourdin and Peccati
(2009).

After Stein (1972), Louis Chen developed this method to investigate Poisson ap-



proximation for sums of dependent indicator random variables, see Chen (1975).
From then on, statisticians put their efforts to extend the applications of Stein’s
idea to many probability approximations other than Normal and Poisson, say,
Poisson process, compound Poisson and binomial approximations, which can
be found in Diaconis and Holmes (2004), Barbour and Chen (2005) and Chen,
Goldstein and Shao (2010). Other than the study of more probability approx-
imations, intensive efforts have been made to apply Stein’s method to a wide
range of areas to examine different distributional approximations, for example,
in Arratia, Goldstein and Gordon (1990), Barbour, Holst and Janson (1992), and
Chen (1993).

Recently, Stein’s method has some new developments. Firstly, it is used to get the
Cramér type moderate deviation, which basically considers the ratio of two tail
probabilities of 7" and Z. Chen, Fang and Shao (2012) uses Stein’s method to es-
tablish the optimal Cramér type moderate deviations for a lot of cases. Secondly,
exchangeable pairs approach is well developed using Stein’s method. Chatter-
jee and Shao (2011) uses exchangeable pairs approach to investigate non-normal
approximation and obtains a Berry-Esseen bound of order O(1/4/n) in the non-
central limit theorem for the magnetization in the Curie-Weiss ferromagnet at
the critical temperature. Thirdly, the concentration inequality approach has be-
come a powerful technique. It can be used to prove the normal approximation
by Stein’s method. For instance, Chen and Shao (2007) uses the concentration
inequalities to give us the optimal uniform and non-uniform Berry-Esseen bound
for a kind of non-linear statistics. Also the concentration inequalities are well
developed to give us the Berry-Esseen bound for independent random variables
and dependent random variables under local dependence. Shao (2010) gives a
new exponential concentration inequality and it can be used to get Berry-Esseen
bounds for other statistics. In this thesis, we will also use this exponential con-

centration inequality in our proof.



2.2 The Main Idea of Stein’s Method

Let Z be a standard normal random variable and let Cpy be the class of bounded,
continuous and piecewise differentiable functions f : R — R with E|f'(Z)| < oc.

Stein’s method rests on the following characterization.

Lemma 2.1. (/22] Lemma 2.1) Let W be a real valued random variable. Then

W has a standard normal distribution if and only if
Ef(W) = EW f(W)), (2.1)

for all f € Cyq.

The proof of necessity is essentially a direct consequence of integration by parts.
For the sufficiency, for fixed x € R, let f, be the unique bounded solution of the

Stein equation
F(w) = wf(w) = I(w < 2) - o). (2:2)

The solution f, is given by

2mew’/2(1 — d(w P(x), w >
fow) = e 23)
2me? 2(1 — ®(2))®(w), w<z

and f, € Cpq. Moreover, f, has the following properties.

Lemma 2.2. (/22] Lemma 2.2) For the function f, defined by (2.3), we have

wf,(w) is an increasing function of w, (2.4)
lwiz(w)| <1, [wfe(w) —ufe(u)] <1, (2.5)
few) <1, |fo(w) = fo(v)] <1, (2.6)

0 < fo(w) < min(1, 1/z) (2.7)
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and
[(w +u) fo(w + u) = (w+0) fo(w+0)| < (Jw| + V2r/4)(Jul + [v])  (2.8)

for all real w,u, and v.

Let W be the random variable of interest. We aim to estimate P(W < z)—®(z).
By (2.2), it is equivalent to consider Ef'(W) — EW f,.(W), which is often much
easier to handle than the original one. For the most simple case, we consider when
W is the standardized sum of independent random variables. Let &1,&s, ..., &, be
independent random variables satisfying E§; =0 for 1 <i<mnand ) ;| B =

1. Let

W=>¢ and WO=W-g, (2.9)

and define
Ki(t)=E&GUI0<t<&§) —1(& <t <0))).

It is clear that K;(t) > 0 for all real ¢, and

/00 K;(t)dt = B€?, and /00 [t| K (t)dt = %E’@\?’. (2.10)

oo

Then we can write

EWFW) = > E&fW

- ZE/ FOVO 4 610 <t < &) — I(6 < t < 0))dt)

= Z/ WO ) K;(t)dt, (2.11)



and
Ef (W) = §jEf%vaﬁ

i=1
- / B (WK ()t (2.12)
i=1 /=00
Therefore by (2.11) and (2.12), our goal is to estimate

P(W <z)—®(x) = Ef(W)—EWfW)
- / B (W) — (WD + ) Ki(t)dt. (2.13)
i=1 "~
Now using the properties of f’'(z), we can get the Berry-Esseen bound. This is

the most simple application of Stein’s method. Next, we list some properties

that will be used later.

Lemma 2.3. We have the following properties

Ce /2, w<x/2

fo(w) <
1, w > x/2,
fw) < Ce=7/2, w < /2
2\ W) =
1, w > x/2,
and
(wh(w)) < Ce ™2 w<11x/12
wfy(w)) <

Cz, w > 11z/12.

Proof of Lemma 2.3 For the function f, defined by (2.3), we directly have

fw) < VIS 2@RD), v )2 (2.14)

1, w>x/2

Ce /2, w<x/2
(2.15)

1, w > /2.



By (2.2), we get

7 w) = ( 27Twew2/2®(w) +1)(1 —®(x)), ifw<z (2.16)
(V2rmwe? 2(1 — ®(w)) — 1)®(x), if w > .

Then we get
Flw) < (1+27m(x/2)e” 3(1 — d(z)), w<x/2 (2.17)
1, w > x/2
e~ /2 w<x
< ce™ s /2 (2.18)
1, w > /2.
Let G(w) = wf,(w) and g(w) = (wf(w)), we get
s w?)e?’ 2 (1 — d(w)) — w x), fw>x
S - (V2r(1+ u)er™ (1 = o(w) - w) D(a), ifw > 210)

(\/%(1 +w?)e2d(w) + w) (1—®(2)), ifw<uz.

A direct calculation (cf. Lemma 6.5 in [22]) shows that

2
0<V2r(l+w?)e?(1 - d(w)) —w < 1o o for w >0,
V2r(1 + uw?)e Po(w) +w < 2, for w < 0.

This implies that g > 0, g(w) < 2(1—®(z)) < 2 for w < 0 and g(w) < 2/(1+w?)

for w > x; furthermore, g is clearly increasing for 0 < w < x. Thus, we have

o) < 41+ 22)e* (1 — ®(z)), if w < 112/12 (2.20)
414 22)e”2(1 — ®(x)), if w > 11z/12.

Ce ™2, w<1lx/12

< (2.21)
Cuz, w > 11x/12.
Lemma 2.4. For any |a| < 7, |b] < §, we have
z2
| fo(w + @) — folw + )| < |b—ale™ T +4]b — all(w > %). (2.22)

Proof of Lemma 2.4 Using Lemma 2.3 and noting that zf(z) is increasing, it

10



follows that

|[f(w+a) = f(w+b)]

IN

IN

IN

IN

INIA

IN

w+b

| f(t)dt|
w—+a
w—+b

s 10 <) - oG@pa
| w+b(1 —O(x) +tf(t) + I(t > x))dt]

(b —a)(1— ()] +| wﬂtﬂwﬁkﬂ Mﬂ162xMﬂ

(b —a)(1 — ()] +[(a = b)(w+ a) f(w + a)| + (b — a)(w + b) f(w + b)
Ha—bI(w+a>z)+|(b—a)(w+b> )]

((b—a)(1 = 2(z)] +|(a—b)(w+a)f(w+a)[(w+a<z/2)|
+(a=b)(w+a)f(w+a)[(w+a>x/2)| +|(a—b)(w+a>z)
+H(b—a)(w +b) f(w + b)[(w+b < z/2)]
+|(b—a)(w+b)f(w+b)I(w—+b>x/2)|+ |(b—a)l(w+b> )|
(b= a)(1 = ®(x)| + Cla —ble™/* + |a = b I (w + a > /2)
+a—blI(w+a>z)+Clb—ale ™/
+b—all(w+b>x/2)+|b—all(w+b>x)

Cla—ble™™/* 4 2|a — b|I(w +a > x/2) + 2|b— a|ll (w + b > z/2)
Cla —ble™/* 4+ 2|a — b|I(w > z/4) + 2|b — a|I (w > z/4)

Cla —ble™"/* + 4|la — b|I(w > z/4).

The proof of Lemma 2.4 is thus complete.

11



Chapter 3

Main Theorem

The main objective of interest in this thesis is the following class of abstract

non-linear statistics of the form

T _ W+ Aq
s /—1+A27

where in general we assume that both random variables A; and A, converge to

(3.1)

zero in probability and W is sum of independent random variables as defined
in (2.9). Many Studentized statistics can be written in terms of (3.1), including
Studentized U-statistics, L-statistics, etc. The main purpose is to establish uni-
form and non-uniform Berry Esseen bounds of optimal order on the closeness of
normality for T, via Kolmogorov distance, that is,

sup | P(T, < z) — ®()|.

zeR
NOTATION. Throughout this thesis, C will denote an absolute positive constant
whose value may be different at each appearance. We shall use || X[, to denote

the L, norm of a random variable X that is defined by || X|, := (E|X[P)}/?, for

every p > 1.

We now present the following main results.

12



Theorem 3.1. Assume that &1, ...,&, are independent random variables satis-
fying (1.1) and T, = Ty(&, ...,&,) is given by (3.1), where W = > & and
A = A&, .8, 7 = 1,2 are measurable functions of &, ...,&,. Moreover,

assume that for some 2 <r <3, E|§|" < oo, 1 <i<n. For any x € R, set
Then, for every p > 1 with (p,q) satisfying 1/p+1/q =1, we have

|P(T; < ) — &(x)]

< c{E(Af ALY+ (1+ |2 E(AZ A L) + e T2 p(AZeT)

+HE[As fo (W] + (1 + |27 ZE|&

e 03 (e 18— A, + 11122 - AP

j=1
where for every x € R, f,(-) denotes the unique solution of the ordinary differ-

ential equation

that s,

e’ /2(1 — d(w ), w>x
= {VFA- s,
2me? 2(1 — ®(2))®(w), w <,

W=>3" &I(& <1) and Agj), Agj), for each 1 < j < n are arbitrary measur-
able functions of {&,1 <i<n,i#j}.
The non-uniform Berry-Esseen bound obtained in Theorem 3.1 is optimal for

many statistics.

Corollary 3.2. Suppose the assumptions in Theorem 1 hold. If we assume that
Zs — 1+ Ay = 2(5 — B&) + As,

13



where A3 converges to zero in probability, then there exists a constant C > 0

such that

|P(Ts < x) — ©(x)|

< C{E(Af A1)+ (1+ |z]) " E(A2 A 1) + e RlI2E(A2W)

+e B0 S (g 1AL = AP + 1Ig 114 — AP ) .
j=1
Remark 3.3. In Theorem 3.1 and Corollary 3.2, the choice of Agj) and Agj) are
flexible. For example, fork = 1,2, one can choose A,(Cj) = Ap(&1, 5 8-1,0,841, -, &)

or Ak (&1, ...,gj_l,fj,fj+17 ry&n) where fj is an independent copy of &;.

14



Chapter 4

Proof of Main Theorem

4.1 Main Idea of the Proof

First, without loss of generality, assume x > 0 as we can simply apply the result

to —T,. By Taylor’s expansion, we know, when Ay > —1,

1 1
w1+A2§1+§A2 and v1+A221+§A2—A3

Then it follows that

W+ A
PW+A, >1) < (ﬁZm):P(W—l—Alzm/l%—Az)

1 1 1
< PW+A, >x)+ Px(l+ §A2 — EA%) <W+ A <z(l+ §A2)),
where we let A, = A) — xAy/2.

Therefore, to estimate

it is sufficient to estimate



together with an error term
Pla(1+ %m - %AS) <WA <a(1+ %Az)}.

Hence the proof is mainly formulated into two parts.

The first part is to get the estimation of P(W + A, < z) — ®(z). To use the
Stein’s equation, we add a term EA,f(W) and consider P(W + A, < z) —
®(z)+ EA, f(W) instead. The term EA, f(WW) will be kept in the result and be
calculated when the result is applied to different statistics. Then we follow three
steps. Firstly, we truncate &, W, K;(t) and A, and prove it suffices to consider
PW+A, <z)—®(x)+EA, f(W). Secondly, we use Stein’s equation to rewrite

it and group them into four terms. Thirdly, we estimate these four terms one by

one, which will be shown in Lemma 4.2.

In the second part, we will use a randomized concentration inequality to estimate

the error term
1 1.5 1

To do this, we also do the truncations first, and then apply the randomized

concentration inequality.

To complete the proof, we will combine all estimations together and make the

result neat.

4.2 Proof

Before we use Stein’s method to evaluate
PW+ A, <z)—®(x)+ EAf.(W),
we will first introduce truncated variables & = &1(|&| < 1), 1 <1 < n and set

W= 25 Ki(t) = E{&I(0 <t < &) = &I(& <t <0)}, (4.1)

16



and

(z+1)/4, ifA*> (z+1)/4,
A, = A*, if |A*] < (z +1)/4, (4.2)
(@4 1)/4, A< —(z+1)/4,

where A* = A(&,...,&,). With the above notations, we have

Lemma 4.1. For A, = A — $Ay,

|P(W + A, <z) — ®(z) + EALf.(W)]

z+1

x4+ 1
< aP(A] > T+ 3D PO > TS P(le] > ) +ZP!@|> )
=1
HPW + Ay < 2) — (2) + EAfu(W )!,
where W is independent of &. In particular, for 2 < r < 3, we have
|IPW + A, <z)— () + EALf(W)]
- 1 1
< |PW+ A, <z)—P(x)+ EALf(W)] +2P(|Ay| > Z) +2P(|Aq| > 5)

n

E|&|
+CZ 1+ |z|"

The proof of Lemma 4.1 will be presented in Section 4.3. By Lemma 4.1, it

17



suffices to consider P(W + A, < x) — ®(z) + EA, f.(W). Write, by (2.2),

PW + A, <z)— ®(z) + EAxfx(W)

Ay
Ef(W+A,) — EWL(V + A,) — EA, / POV +6)dt
0
i=1
- Z E&[fo(W +AP) = f,(WO + AD)]
+ZE — &) (WO + ADY = EA, [ fL(W +t)dt
ZE + ALK (H)dt + BoEfL(W + A,)

- Z E&[f2(W + AP) = f,(WO + AD)]

N EEf (W + Ay) — (W +ZE — &)LV + AD)
=1

Ay
~EA, | LV +t)d

/Of( )t

Then we have

|P(W + A, <z)— ®(z) + EALfo(W)]

< |Ry| + |Ra| + | R3] + | R4l

Sk [ ROV ARy = YT BELLOV + A) — 07O + A
Z E&[fo(W + A,) — fo(W + AD)]
ZEs [(&] > DEfL(W +A,) + ) E(& = &) (WD + AD)

EA, / £V +1)dt.
0

18



The estimations of each term are given in the following lemma.

Lemma 4.2. There exists a universal constant C' > 0, such that, for any p > 1

and q = q(p) satisfying 1/p+1/q =1,
Bl < Ce LS Blal + D gl (1810 — AP, + 132 = A9),) },
=1 =1

| Ry

IN

Ce3 Y Nl (181 = AP, + 135 — A1),
=1

|Rs| < Ce*/* Z El&|"
i=1

and

_ 1 _ _ -
|Ry| < c(m% + mmg) + CeB(AZM).

For the second part, we will estimate the error term. We will state the result in

the following lemma and give the proof in Section 4.3.

Lemma 4.3. We have

1 1 1
P(z(1+ §A2 — §A§) <W+A <z(l+ §A2))

< Ce Y Blg|" + E(e"A2) + Z 1&]pI1A: — AP, + Z & ]p1182 — ASl,]
=1 1 3

r+1

P([A] = )+P|A2|> +ZP >—I£z|>1 +ZP\&!> )-

Hence, from Lemma 4.1, Lemma 4.2 and Lemma 4.3, we get the result

W+ Ay
|P(\/ﬁ <z)— ®(z)|
< C(IB@L V)] + (BT A + H%E(A% A1) + Ce " B(AZY)

I+ e N 1A = APl + 3 N lpl142 = AP,)).
j=1 Jj=1

The proof of Theorem 3.1 is then complete. Next we prove the corollary.
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Proof of Corollary 3.2 Recall that for 1 <7 < n, & has mean zero, variance

1/n and E|" < oo with some 2 < r < 3. As we assumed

n n

Dp= & —1+03=> (§—E&)+ A,

i=1 =1

where Az — 0 in probability. Noting that |A;| < 1, we can also assume |Az] < 1.

Now we calculate each term.

ENA2

n

= E() (& —E&) + Ay)?

i=1

< CY EIY (8- B +CEA]
i=1 =1
< C) E|4"+CEA;, (4.3)

=1

where |&;| < 1 gives us E|&|* < E|&|".

BV A2
< BV (& - EE) + Ag)?
=1
< B> (& - B+ (& - EE)(E — B + Ee” A
i=1 i#j
i=1 i#]
<

C> ElG| + EeV A, (4.4)
=1

ST IEN A — AP,
=1

= S lElle2 - B2+ Ay — AP,

=1
< DU EE+ D IIENIAs — AP, (4.5)
=1 =1
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P(|Ag| > 1/4)

n

< P(|As] >1/8) +P\Z — E€2)| > 1/8)

< P(|As| =2 1/8) + CZEISZ-Q\’"/Q,

i=1

< BlAP+C) Blal (4.6)

=1

And
BALOV)| < [EALO)| + SIERL(W)] + SIE Y (& — BE)LOV)),
i=1

where

n

E Z(? — B&) (W)

= E) (&~ BQ)f(W)— fW)
zzl ) ) 6—1 B
— EY@- B[ FvO+ha
i=1 0
- EZ& - Bg) / 0<1<&) ~ 16 <t < 0)f (WO + )]
= ZE/ FWO ) (& —EEYI0<t<E) —I(E <t <0))dt.
Then for 2 < r < 3, we get
SIEY (@ - B f(7)]
i=1
< gz 1|Ef’(W“>+zf)||E(§?—Eé?)(l(o <t< &) —I(§ <t <0)|dt

i=1 71

0671/8 Zn: E|£l|r

i=1

IA
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Therefore we get

W+ A <
VI+A,

C . C &
< CE(A2A1)+ ——FE(A2A1 —22p(AZW El&|"

|P( ) — ()]

+Ce 03 (6 1A — AP, + 1143 — AP )
j=1

The proof of Corollary 3.2 is then complete. For the reminder of this section, we

shall give the proof of each lemma.

4.3 Proof of Lemmas

First, we state two properties we will use in the proof of the lemmas.

Lemma 4.4. For W =3>"" &, we have
EeV < e, (4.7)
Proof of Lemma 4.4 To prove this lemma, we need to use Bennett-Hoeffding

Inequality (cf. Lemma 6.2 in [22]), which is as follows. Assume that EX; < 0,
X; <aforeach1<i<n,and Z?Zl EXZ-2 < Bi- Then for ¢ > 0,

Ee" < exp (a?(e" — 1 —ta)B2) . (4.8)

Now let a =1, B2 =1, t = 1, then it follows from (4.8) that
BV peW-EW) EW

— F"E exp{Z(é — E&)}

IN
wa
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Proposition 4.5. For W = """ | &, by using Lemma 5.2 in Chen and Shao(2007),

it follows that
P(A <W <Ay, Ap > a)

2 n
< T As = Adfly 10052 + B) + 4237 DIl N4~ Arlls}

=1 =1

where a is a real number, A;; and Ay ; are Borel measurable functions of (&;,1 <

jgn,j#z’),p>1,q>1and%—i—%:l.

Next we prove the lemmas.

Proof of Lemma 4.1 From the definitions (4.1) and (4.2), we get

P(W+ A, >x)

= PW+ A, >xz,max|§| < 1)+ P(W+ A, > x,max|§| > 1)

< P(W+A§Zx,|A;|§x+1)+P(W+A;2x,|A;|Z$+1,max|§i|§1)
+P(W+A;p2x,|Az|§x+1,maX|€z‘\>1)
FPW A, > oA > T max e > 1)

< P(W+Ax2x)+P(|Ax|ZxT+1) P =221 naxie) > 1)

< P<W+Ax2x>+P<|Ax|>"’”11>+éP<wz3”34‘1,|§i|>1>

< POV +A, 20+ P2 TEh e 3 pov 2 2 g < 2

i=1

r+1

+3 Pl > T

IN

o +1 - —1
P(W + A, > ) + P(|A,] > xT)JrZP(W—@- > xT,|5iy > 1)
=1

- r+1
| >
+;P(I&|_ )
- < z+1 “ ) z—1
< PW+A; > 2)+ P(|A:] > — )+ PO > ;P& > 1)

i=1
r+1

+ P& > =),
=1
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which gives us

IP(W + A, <) — POW + A, <)

= |[P(W+A,>2)—P(W+A, >1)

n

< PAI2 T+ S POVO > TSP > 1)+ 30 PGl > ).
i=1 =1

Therefore we get

|[P(W + A, <) = 0(x) + EAf (W)
< |PW+A, <z)—®(z)+ EA W)+ |P(W + A, <z)— PW+A, <

< |P(W + A, < 1) — 0(z) + EASW)| + P(A,] > 250

+§:P(|W<Z’)
1=1

For 2 < r < 3, using Chebyshev’s inequality and Rosenthal inequality, we have

ip(ywﬂ'
=1

" B(WO + &l
< Z { (ﬁj)r ) P&l > Z xLl

=1 2

r+1

— Pl > 1) +ZP|5Z|>

)-

z+1

— Pl > 1) +ZP!&\> )

"L O3, EIG) + 32 E|§|] |§
< jF#i J e J |€Z 7
— ; ( ! ) Z a:+1
< CZ?=1(1+E‘£] )ZP |5 CZi:1E|§i|
- 1+ |z|” ‘ 1+ |z|”

Coja EI&I L O L Blar
< ] 1 J E ; =1 1
S i Z &I+ =T

—~ El&]"
< ) 4.
= C; T+ [ (4.9)
Noting that A, = A; — $A,, we have
r+1 T rz+1

P(|A;] >

< - = >
) < PA - San > T

) <
1 1
< P(Mi] > )+ P(5adal 2 7)
1 1
< PlA = )+ P(jAq] = 5). (4.10)

The proof of Lemma 4.1 is complete.
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Proof
wf(w

Then

Ry

where

of Lemma 4.2 For the first part, we prove the bound of R;. Let G(w) =
) and g(w) = (wf(w))’, we get

FW+A) = WD+ AO 1)

GW +A) = GWD + AD 4 t) 4 I(W +A <) — I(WD + AW 4 ¢ < z)

(WO + AD pwydu + I(W + A <) = I(WD + AW 41 <),

c\
o

+
L
Qv

recalling K;(t) = E{&I(0 <t < &) —&1(& <t <0)}in (4.1), we can get
= i E/_ll F'W 4+ A)K;(t)dt — i EE[FW + ADy — f(W® 4 AW
= Z:: E/_ll[(f’(W +A) = (WD 4+ AD L) K;(t)dt

= i / 11 E( /t N gWD + A 4 w)du) K;(t)dt

n 1
+ /1{P(W +A<2) - PWD 4+ AD 1t < 2) K, (t)dt
i=1"Y"

= Ri1+ Rig,

noo E4AAG .
Rip = Z/ E(/ gW 1+ AD 1 w)du) K;(t)dt,
. - t

nool
R, = Z/ {(PW+A<z)—PWY 4+ A0 1t < 2)}K,(t)dt.

It suffices to show that for some 2 < r < 3,

|Ri4|
< Ce 0T EBlGl + ) IEI 1A — AP, + 1Ay — AP l,)), (4.11)
=1 =1
| Ry 2]

< CeSTEBlGl + Y NIl (1A — AP, + 182 — AP l,)), (4.12)
=1 =1
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Proof of (4.11) We first write

N GraA .
Ry = Z/ E/ gW + AD 1 w)duK;(t)dt
i=1 /-1 Ut
n 1 [e%) o o B B o B
- / E / GOV 4 AD £ ) I(t < u< &+ A — AD)dui(t)dt
=1 -1 —o0

n 1 o)
= / E / GV £ AD 4 ) I(E + A — AD < u < t)duks(t)dt
i=1 Y 1 —00

n 1 %S
= 2/ E/ Q(W(i) + A® 4 w)I(n < u < ne)duk;(t)dt
i=1 Y1 —o0

n 1 o)
-> / E / gWO + AD )T (ny < u < mi)duk;(t)dt,
=1 /-1 J-
where we let 7, =t and 7o = & + A — A®. Then we have

|Ria| < Z/ ]E/ gW@ + AW + ) (< u < no)dul K;(t)dt
i=1 Y=o —o0

+ Z/ |E/ gW + AD 4 ) (ny < u < my)dul K;(t)dt.
i=1 v~ —o0
Claim that for ¢ <1 and El < 1, we have

E(/Oo g(W(i) + AO 4 w)I(n < u < n2)dul&;)
< Cem (&l + 1A = A + [2]). (4.13)
And similarly, we have
E(/OO gWD + AW 4 u)I(n < u < mr)dul;)
< Cem (&l + 1A = Ay + [2]). (4.14)

Then note that |&] < 1,we get the estimation of R, ;.

n 1
Rual < 03 [ a1+ &l + 18 - A9 Ki(pd
i=1""

IN

Ce(Y_EI&I + ) |A—AY|EE)
i=1 =1

IN

Ce I BIEN + 1A = AV )&,)
i=1 =1

IN

Ce (3 Blal + D (Il A = AP + &1l 82 — A5],),
=1 =1
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where 2 < r < 3.

Proof of (4.13) and (4.14). By Lemma 2.3 and Lemma 4.4, we get

E/ g £ AD )T (g < w < mp)du

o0

< E/ gWD 4+ AD L) Iy < u < ) I(WD + AD 44 < 112/12)du

[e.9]

—i—C’xE/ Im <u <) I(WD 4+ AD 1y > 112/12,u < T /12)du

[e.9]

+CxE/ Im <u <) I(WD 4+ AD 4y > 112/12,u > T2/12)du (by (2.21))

[e. 9]

IN

Ce_x/2E|772 —m|+ ch[[(W(i) + A0 > z/3)|ne — ml]

—|—C'xE'/ Im <u<n)l(u>Tr/12)du

—0o0

IN

C’e‘””/zElm —m|+ Cx[P(W(i) + A0 > I‘/v?))]l/p“’f]g — Mg
+Cx[P(ne > Tx/12)]'7 |0y — mull

Ce 2By — m| + [Ca(e BBV TANP 4 O (e ™12 Rt A=A YR 1, — g |,

IN

IN

Ce /Bl — m| + Cx(e™12)V7||ny — i,

IN

Ca(e™/12) 7| + & — AD — 4,

IN

(I llg + 1A = Ay + [¢]),

which gives (4.13). The proof of (4.14) is similar and omitted here.

Proof of (4.12) Note that

IPOW + A <z)—PWD + A 1+ <2)

< Pa-A<W<ae-AD 4+t -§)+Plx— AV -t 4§ <W <z - A),

where for [t| <1,

1 1 (i - 1 3z 9
T :3:5__’ andx—A(Z)—t—l—@Zx—%—l—l:—x——.

—A> -
tTesET Ty 1 1 1 1
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Then using Proposition 4.5, it follows that

Pz —A<W<z—-AD 4t-¢)

< Cemw{T5]|&ll2 + 750t + 10(Bs + B5) + 8.4 > [I&ILIAD — All},

J=1

and

Plz—AY —t+ & <W <z -A)

< Ce S {T5||& ]l + 750t + 10082 + Bs) + 8.4 Y 1I&L,IAD — All,}.

j=1

Therefore

3 3z n — (s — 3z 3z i 1 —
< O ¥pu s O F Y G - B+ O ¥ (B4 )+ Ce ¥ Y [ R
j=1 i=1 71
< Ce T O E1LIAY — Ally + B2 + B)
j=1

< Ce v O BlEl + ) (Il AL = APl + & 1182 = AP]l),
=1 =1

where 2 < r < 3.

For the second part, we prove the bound of R,. Using Lemma 2.4, we get

T+ A) — (7 + AD)| < C|A — AD|e=/4 1 4|A — AD|[(F > 2/4).
Then it follows that

EIG||f(W +A) — f(W + AW
< Ce™MEIG||A — AD| +4B|&||A — AD|I(W > 2/4)

< Cem MEIIA = APl + 4IEIW > 2/4)],[|1A — AP,
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where p > 1,1/p+1/q = 1 and by Lemma 4.4, we get

EIGPIW > 2/4) < e EIg[Pe"

— e_x/4E|§-|pegiEeW_gi
< P ARE P
< Ce*/ME|&P.

Then we have

EI&|f(W +A) = f(W + AD)]
< Ce Mgl IA - AV, +4(Ce T EIER) A - A0,
< Ce™ Gl A = AW, + Ce &1 A =AY,

Now we get the estimation

[Ro| < Y BIGIFW +A) = (W +AD)
=1

n

< S (CeTHENNA = AP, + Ce &L IA - ADY,)
=1
< e S YEIIA — ADY,
=1
< Ce BN (Il A = AVl + [€],182 — AD]l,)-
=1

For the third part, we prove the bound of R3. First we claim that

E|f,(W + A)]

IN

Ce™/4, (4.15)
Elf,( WO £ A < Ce /4, (4.16)
These can be proved by Lemma, Lemma 4.4, |A| < 1/4 and |A®] < 1/4.
Elf,(W + A)]

= E|ff(W+A)|I(W+A<Lx/2)+ E|f/(W+A)|I(W+A>x/2)

IN

Ce ™2+ P(W + A > 1/2)

Ce—m/Q + e—x/ZEGW—l-A

IA

Ce /4,

IN
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E|fo(WY + AD)|

= E|f(WD + AN IWO + AD < 2/2) + E|f(WD + AD) 1O + AD > 2/2)

IN

Ce ™2+ P(WD + A > z/2)

Ce—:v/2 + e—x/2E€VT/(i)+A(i)

IN

Ce /%,

IN

Therefore we get

Ry < IZE€1|&|>1)Ef |+|ZE WO 1 A
< |ZE£31<!&| >1D)Ef' (W +A)| +] ZE&?IM > 1)EfW® + AD)]
< ilEramErf;(Wmn+iE|@|TE\fx<W+A>r
<

Cety Bl
i=1

where 2 < r < 3.

For the last part, we prove the bound of R;. Noting the explicit form of f

n (2.16), we get f'(w) < 7t when w > z, and f'(w) < e™®/2 when w < x/2.

Here A, = Ay — 2A; and |A,| < 2, we have
—_ Aw —_
|EA$/ /(W 4+ t)dt|
0
_ |EA, / POV 4+ OI(W < 2/2)dt + EA, / POV 4+ )I(x)2 < W < 20)dt
0 0

Az
LEA, / POV 4+ OI0V > 22)dt]
0

IA

e + E|API(z/2 < W < 2z) + e *?E|A,)?
x

IN

2 2
o) (BA? 4 “"”z EAZ) + 2BA? + %E(Agf(x/z <W < 2z)

1 2 AZe
Ay e ER + L T BA3) +2EA} + Co?B(=E— )

_ 1 _ i
C(EAerH—xEAg)JrCe E(A2eV).

IN

IA
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Now the proof of Lemma 4.2 is complete.

Proof of Lemma 4.3 To estimate P(z(14+ 508, —3A3) < W+A; < z(143A,)),
we first do the truncation, then use the randomized concentration inequality

(Shao, 2010). As before, we let
AT N T A2
A, = A 2A2, Al = A 2A2+ 2A2,
then it follows that

1 1 1
P(fl?(1+§A2 - QAE) <W+A < $(1+§A2))
= Plxa—AL<W<z—-A,)

= Plx—AL<W <z —A,max|§] < 1)+ Pz — AL <W <z — A, max |§] > 1)

IN

Plx = AL <W <z — A, max|§] < 1,]|A,] <
x+1

1A] <

z+1

+P(max ] < 1,[As[ > ——) + P(max |§] <1, |A’|

x+1

)
z+1

+P(e = AL < W <o = Apymax|§] > 1Ay < —— [AL] < ——)

+1 +1
4 P(max |&] > 1,|A.] > xT) + P(max|&| > 1, \A;y >z )

3r —

IN

o _ 1
P(x— AL <W <z —A,)+P(W > ,max [&;] > 1)

z+1 r+1
)+ P(IAY > 1)
1

1- 1- - _ 1
P(e(l+ 58; = SA) S W+ Ar < a(l+ 549)) + P(IA1] 2 ) + P(5 180l 2 )

P(|A,] >

IN

n

l’—l—l
+P(5 S A2 > )+ P | >1) +ZP|§11>

=1 =1

z+1

)

1 1o, o o 1 1 1
Pla(l4 580 = 583 S W+ Ay S a(1+ 58)) + PIAd] 2 ) + Pl1Ao] 2 3)

IN

m—l—l

+ZP >— &l > 1) +ZP €] > ),

where all terms can be included in the main theorem except
e 1<, - 1.
P(z(1+ §A2 — §A2) <W+ A <z(l+ §A2)).

We will use the following lemma which can be found in Shao (2010).
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Lemma 4.6. Let

& = GIlGI<1), W= & A =A@, &),
=1

AI = Al(él?"'?éﬂ)a A;:A2(§177£n)

Assume that there exists c; > co > 0, 6 > 0 such that

Y E& < (4.17)
i=1
and
> E|g|min(5,1€/2) > ca. (4.18)
i=1

Then the randomized concentration inequality gives us for A >0

EAWHAI (AT < W™ + A* < AY)

2 2>\5 . .
) )+e_[E€A(W +A%)

< (EQZA(W*+A*))1/26XP(_8 B
C1 Co

W (145 — ATl +20)

- *@W) L A*D))) & * (1 * *(1
1237 B OO g (AT - AT 4 |ag - A50))
i=1

+8 ) " E|A* — A" min(|§], |A* — A*))(1 4+ A(A] — A} + 26))
=1

max (MW HAY) AW +AD)y) (4.19)

for any measurable functions A*®, A’{(i), A;‘(i) such that & is independent of
(W@ A*@), Ai(i), A;(i)), where W*0 = W* — ¢,

To use the lemma, now we let

_ _ 1- 1- 1~
w* = W, A*=A;, Al =xz(1+ §A2 — §A§), Ay =z(1+ §A2),
; ~ (i *(i Tiwy 1 xa *(i I
A= AP AT = a4 AT = (AT, AT = a1+ 5AY).
Let c; =1, ¢y = 1/2, A = 1. Noting |Ay] < i, |A] < &, it follows that

1 J 27x
* * * - A2 >
WA 2 A = a1+ 58 - SA) > T
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Then we have

EeW HAIT(AY < W* + A* < AY)
> Eew [(AT<W*+ A" < AY)

= eB"P(AT < W'+ A" < A)).
Hence, from (4.19), we obtain

P(A} <W*+ A" < A3)
< e @ EWTHAN (AT < W4 AT < AS)

2 5~z
< e *(Be (W*+A*))1/2€Xp(_(18/522) )+ 2e%e” [EeWV"+47)

* T x
1 W (|5 83 +26)
2
(23
i=1

El(1Ar — AT+ A5 — A7)

+8 " E|A* — A min(|§], |A* — A*D))(1 + (%Ag + 26))
i=1

max(e(W*-l—A*)?e(W*(i)—l-A*(i)))]
< e Bemam + aehe el B W (A3 + 29)
+2 i(EeW*“’ &llA; = A+ B Ig]1A5 - A7)
+8(1+—+25 ZE|A* A D|IE(7 + V]
< Ce 3" m 4 8 B75 + e e‘ﬁerW|W\|A§\
e’ ”’xz 1™ 1€l A2 = A7, + 85 1B 6,143 — ALl
=1
+C(1 4 0) ‘HZ 1BV &I, 1A — AP,
< Ce 2%+ Ce " E(e"|W|A2)
+Cem = (& lpI1AL — AP [l + D &N I1A2 — AY]l,)
=1 =1
< Ce #%§ + Ce »°E(V A2)

+Cem 53 Gl 1A — APl + Y Gl IA2 — AD]l,),
i=1 1=1
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where we use the fact
VW < OV + ex™).

Note that E|&|* < oo, using Remark 2.1 in [23], we canlet 6 = 1/23"" | E|§[® <
1/23""  E|&|". Then we get

P(AT<W* + A" < A})

< Ce Y Blg|n + Ce i B(eV AY)

=1

+Ce 5= (Y& AL — AV [l + ST &l IA: — AP,
=1 =1
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Chapter 5

Applications

Theorem 3.1 can be applied to a wide range of studentized statistics and provide
bounds of the best possible order in many cases. In this section, we give three

applications to illustrate the usefulness of Theorem 3.1.

5.1 Application to Student’s t-Statistics

5.1.1 Introduction

Let X3, X5, ..., X, be a sequence of independent real-valued random variables

with EX; =0 and EX? < oo. Put
Se=>_Xi, VZ2=) X}, B:=) EX]. forn=12,...
=1 =1 =1

Then the Student’s t-statistic is defined by

Sn

Tn = )
V/nsy,

where 52 = =370 (X; — S, /n)%.
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Student’s t-statistic is one of the most important statistics. When o is known, we
know that S,,/y/no is asymptotically normal distributed, then we can construct
a confidence interval or do the hypothesis testing for u. But when ¢ is unknown,
which is in most cases, we replace o by s, and use this student’s t-statistic to do

the hypothesis testing or construct the confidence interval for u.

The student’s t-statistic follows a t distribution if we assume the sampling is
from a normal distribution. But even if the data is not normally distributed,
when the sample size is large enough, we can use the standard normal distribu-
tion to describe the student’s t-statistics since s,, converges to o almost surely
as n goes to infinity. A lot of statisticians then naturally consider the behavior

of the approximation.

There are two ways to consider the approximation. One is to consider the ratio
of the tail probabilities, say, Shao (1999) gives a Cramer type large deviation
result for Student’s t-statistic. The other is to consider the difference of the two
distribution, using Berry-Esseen bound. The Berry-Esseen bounds of Student’s
t-statistics have been investigated by different authors, such as, Slavova (1985),

Hall (1988) and Bentkus and Gotze (1996).

5.1.2 Main Result

It is known that the Student’s t-statistic is closely related to the self-normalized

sum S,,/V,, via the following identity

Sy n—1 1/2
T, =—| —mm— . 5.1
- (o= smr) oy
Since s/(n — s)1/2 is increasing on (—+/n, v/n), (5.1) follows that for > 0

n

{1, >z} = {% > x(m)m}- (5.2)
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Therefore it is sufficient to state our main result in terms of the self-normalized

sum. Noting that

™

S

Sﬂz
=
s

RIS
™
3

Z?:l i

)
V2 &

where & = X; /B, satisfying £ =0 and Y ;' | E€Z = 1, it follows the form

<
\ling
Il

=

®

WA

T+ A,

n

where W =370 &, Ay =0,and Ay =3 " & —1=>" (& —-E&). Itisa

special case with A; = Az = 0. Therefore we can directly get

Theorem 5.1. There exists a constant C > 0, such that, for some 2 <r <3

|P(T, <z) = @(x)| <C Y EIGI"
=1

The result Theorem 5.1 got is known before, see Bentkus, V. and Gotze, F (1996)

for instance.

5.2 Application to Studentized U-Statistics

5.2.1 Introduction

Let X, X, Xy, ..., X,, be a sequence of i.i.d. random variables, and let h(x,y)
be a real-valued Borel measurable function, symmetric in its arguments with
Eh(X1,X5) = 6. Then the U-statistic of degree 2 for estimation of § with kernel
h(z,y) is defined to be

2
Unzm > X X)),

1<i<j<n
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For a non-degenerate U-statistic, if Eh*(X1, Xy) < 0o and o) = Var(g(X1)) > 0,

where g(x) = Eh(z, X), then the central limit theorem holds, i.e.,

P(@(Un —9) < x) — ®(2)

Og

sup — 0. (5.3)

zeR

However, since o, is typically unknown, it is necessary to estimate o, first and
then substitute it into (5.3). Indeed, what commonly used in practice is the

following Studentized U-statistic

7, = Y0, 0). (5.4)

2r,

where n~'r. denotes the jackknife estimator of o7,

n 1 n
m=m =D =27 (g - ) with g=— 37 h(X;,X)). (5.5)
i=1 j=L#i

Berry-Esseen bounds for Studentized U-statistics have been obtained by various
authors. For example, Callaert and Veraverbeke (1981) gave the Berry-Esseen
bounds among others. Zhao (1983) sharpened the work of Callaert and Ver-
averbeke (1981) and obtained the optimal rate of convergence, O(n~*/2), when
E|h(Xy, X5)[* < 0o and 07 > 0. Wang, Jing and Zhao (2000) further weakened

the former condition to E|h(X1, X5)|* < oo.

In particular, when h(z,y) = (x + y)/2, the Studentized U-statistic reduces to

Student’s t-statistic.

5.2.2 Main Result

We now study the rate of convergence for the distribution of the Studentized

U-statistic T,, i.e.

P(T, < z) = P(ﬁ(Un —9) < :c) (5.6)

2,
to its normal limit in Kolmogorov distance. Under the current setup, Theorem

3.1 specializes to the following result.
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Theorem 5.2. Assume that 6 = Eh(X, X3) = 0 and E|h(X1, X2)]? < co. Let
g(x) = Eh(z, X1), 0; = Eg*(X1) and assume also that o; > 0, E|g(X1)]* < oc.
Then

|P(T < @) — ()|

< — (07" Blg(x0)P + o, 2(Blg(X)[*) S (BIh(X1, X))3 )

<
vn
5.2.3 Proof of Theorem 5.2.

First, if we put h = h/o, and § = g/o,, then §(z) = E{h(x, X;)} and §(X)),

., §(X,) are i.i.d. random variables with zero mean and unit variance. From
the scaling invariance property of Studentized U-statistic, we can replace h and g
with & and g respectively, which does not change the definition of 7},. For brevity
of notation, we will still use h and g but assume without loss of generality that

oz =1.
We begin with some standard truncations by letting, for any 1 <17 < n,

9(X:) = g(X)I(Jg(X;)] < n'/?), 0 = Eg(X,), o

(X, X;) = WX, X))o, g (x) = (3(x) — 0)/d,,

Vi1, x2) = A2, 22) — g% (21) — g (22),

so that ¢*(X1), ..., g"(X,,) are i.i.d. random variables with mean zero and variance

one. Put & = ¢*(X;)/v/n, 1 <i<n,

" u 1 (X, X
Sn:Z;fia VnQ:z_;gzzv An:n_l Z %7

1<i<j<n

n

2 _ (i) 2 o (X X)

i=1 j=L,j
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and define

2 1 &
U“'< - h* Xi,X', F = h* Xl‘,X',
1<i<j<n j=1,j#1
*2 n—1 < * %\ 2 *2 n—1 - %2
T, (n — 2)2 Z(qz n) ) S, (n — 2)2 Z q;

=1 i=1

and note that

n n
D_(a — U =) g = nU?.
i=1 i=1
On the event { max;<;<, [g(X;)| < n'/?}, it is easy to see that
UpJrn=U,)rr,

which further implies

1,

vnU, /(2r},)
VoY
{532 — (n2 — n)Ux2/(n — 2)2}1/2
1,

T T - o0
where T)f := /nU}/(2s%), and
(T, > 2} ={TF > z/(1 +42*(n — 1)/(n — 2)*)"/2}. (5.8)

Therefore we only need to consider 77" instead of 7},. In order to apply Theorem

3.1 to 17, first observe that

1 - n'/? .

* (X X)) = _9¢. (1)

Gi= 1 2 WX X) = T {(n -2+ S+ W}
J=Lj#
such that by routine calculations,
—922(n—1 " Y2

(n=2)"(n )31*12 = {(n —2)& + Sn + Wr(f)}

n

i—1

= (n—=2V?+ A+ (3n—4)S;
+2(n—2) Y WP +28,> W
i=1 i=1
By Cauchy-Schwarz inequality, the last term can be bounded by

1S, > "W < VS, A,
i=1
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so that if we write

2 _ N 2
Sw=—— (V2 +6,), (5.9)

n

then 0, = 0,(X1, ..., X,,) satisfies

16, < 4SZ/n+202/n* +2() W) /n
=1

< Opa+ 0, (5.10)

where
Ony =482/ 4200 n?, G0 :=2(D_ &W)/n

Moreover, by Hoeffding’s decomposition,
VU2 =S, + A,

which together with (5.9) gives

\ Sn+ A,
Tn
dor/T+ (VE=1)+46,

(5.11)

where d, = \/n/(n —1).

By Markov’s inequality and (5.10), together with the fact (recall that Eg(X;) =
0, Eg*(X;1) =1 and thus ER?(Xy, X3) > 1)

0| <n”'2 Gl>1/2, (5.12)
we have

P(ldn,1| > n_l/Q) < nl/QE(Sn,l
< n1/2{4/n+2(EAi)/n2}
2
< pl/2 42
C

< %EhQ(Xl,XQ), (5.13)

where

EA2 = %ZE{ Zw()(i,xj)}2 < nEW* (X1, X))? < CnERY(Xy, X,),

i=1 i
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and
ESy? = Z EE =1.

By (5.11), (5.13) and noting that |d, — 1| = O(n™1), it is sufficient to consider

A,
P( Sn + <CL’>
V1+(V2—1)+4,
< < S +A < X, |5n,1| < n71/2> —I—P(](5n,1| > n71/2)
S +A C
P + —Fh* (X, X 5.14
<\/1+ (VZ2=1)+n"12 46,0 ) vn (%, %) (514
In Theorem 3.1, let
X X;)
A, = Z VX X) (5.16)
1<z7&j<n

Ny = (VP=1)+n242(> &W)/n

n

= Y@ B+ S (KX (617

=1 i=1 j#i

However, since what we really dealt with in Theorem 3.1 is a truncated version
of Ay, we assume in the following without loss of generality that |Ay] < 1. For

each 1 <[ <n, set

1 *
AW — R > (XL X))
" 1<igi () <n
and
n 1 y— .
ll;} =117l J#Ll
so that
2
1 1 (TL _ 1)\/% ZZ# w ( ) l)
and

1 *
D= = - B+ —5{ad> w0, X) + Y & (X, X))}
J#l 1#£l
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Lemma 5.3. There exists an absolute constant C' > 0, such that

EIA —AY)?2 < On?ERY (X1, Xo), (5.18)
and
ElA, — AV
C
< E&+ ﬁ(l + ER* (X1, X2) 4+ Elg(X2)h(X7, Xo)]
+(Blg(Xa) ) (BIR(Xy, Xa) ). (5.19)

As a direct consequence of above lemma, we have
S llallar = APl < CnT A ERA (X, X) } (5.20)
I=1

and

> lalllaz — AP,
=1

< COn™'R(Blg(X0)P) P(EIh(X1, X)), (5.21)

Now we calculate FA, f,(W), where A, = A; — 2A,/2. As proved before, we
have E|f.(W)| < Ce™@/* and

ER*(X1, X5)

2
<
Bl < 2n—1)

(5.22)

therefore

1/2

E|A f,(W)] < Ce ™ * n BR* (X1, X,)) 7 < Ce“‘/gn_l/Q(EhQ(Xl,Xg))l/(25.23)

For

—SEAf (V)
= —2E :< P - EE) + in + n%/ g (& ;w%Xi,Xj))}fx(W)
< ——E(il@? ~ BENLV) — & s Z (&;W(waj))fw(”’) -3 %
< H,+ Hy+ Hj,



it is easy to see that

|Hy| < C:”jﬁm
Lemma 5.4. There exists an absolute constant C' > 0, such that
|Hy| < Cxe™/*n~YV2E|g(X))]?, (5.25)
and
[Ha| < Cae™*/n =2 ((Blg(Xa)l") A (EIR(X,, X)) + Blg(X1)). (5.26)

By (5.23), (5.24) and Lemma 5.4, we get

|EA, fo(W)]
< |EA, fI(W)‘-i- !EAQfI(W)!

Cxe
<

(Elg(X2)| )1/3(E|h(X17X2)|3)1/3+E|9(X1)|3)- (5.27)

Next we calculate

where EA? is given in (5.22). Using |As| < 1, by (5.34), (5.35) and (5.36), we

get

EN2

IN

IN

IN

- 1 - — o 17
EAY + B+ e "PEAje",
€

2

CB| Y (& - BE) + S 6 (X)) + %

i=1 i

C - C
=1 i

Cn 2 EIg (X[ + On V2 ((Blg(X) )} (BIR(X, X)) + Elg(X))

Cn2(Blg* (X0)| + (Blg (X)) (BIB(X, X)), (528)

44

(5.24)



EA2eY
_ 03125 - B+ 2 (6 (X)) + |
i=1 j#i
< E|WZ(&Z¢*<XZ-,XJ- IF W+0E|Zs — B}
i=1 J#i
< OBl Y (6 006 X0) + P (B2 4 03 Bl
i=1 j#i i=1
< 7(<Eh2<xl,x2>>1/2 + (Blg(X:)1")3 (BIR(Xy, X)) + Elg(X)) + CZE!&F’
¢ 1 3\4 3
< ﬁ(<E|g<X2>\ )3 (BIR(X1, X)) + Blg(X0)F). (5.29)

Now, combining (5.14), (5.20), (5.21), (5.22), (5.27), (5.28) and (5.29), we get
Theoremb.2

|P(T, < ) — ©(x)|

< %(E|9<X1>|3+<E|g<X2>|3>%<E|h<X1,X2>|3>é). (5.30)

For the reminder of this section, we prove the lemmas we used.

Proof of Lemma 5.3  For (5.18), using the fact (5.12), we get
N (Era O CEEDN
< Cn—2Eh2(X1,X2).

For (5.19), we get

E|Ay — AP
< me o B(a w0 x0) v (Y e x)) )
J#l 1#£l
< B¢+ %(Eiﬂ (X1, Xs) + Eg*(X3)Eg(X2)h(X1, Xo) + (Eg*(X1))?

+(Bg(Xa) E(h(X1, X2)|X1))?).
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where we use

and

(e Y v (x,. %))

J#l
= B(GE(D_ v (X5, X)) X))
J#l
= E(f%E((” - 1)¢*2(X1,X2>|X1>>
= (n—1)E(GY? (X1, X))
< (n—1)EERn* (X1, X>)

< nER*(X1,Xs), (5.31)

B(Y &v' (X, X)) )

INIA

IN

VAN VAN VANREN VAN

IN

1#£l

EQ &v™(X, X)) + ) E(G&n™ (X:, X)w™ (X, X))
i#l i#j#l

nEBIZ(X,, Xs) + 2B (x50 (X, Xo)" (X, X))
nER* (X, Xy n2E< (§2¢*(X1>X2)|X1)E(§3¢*(X1>X3)|X1)>
nEh (Xl X2

)+
)+
)
+CnB{ B(5(X2) (h(X1, Xz) — 5(X2))|X1 ) B (9(Xs) (h(X5, X3) — 5(X5))1 X1 ) §
nER (X1, X5) + Cn(1+ Blg(X2)h(X1, Xo)1 ) (14 Blg(Xs)h(X:, Xy) )
nER(Xy, X) + Cn{ 1+ Blg(Xa)h(X1, Xa)| + Elg(X2)g(Xa)h(X1, X2)h(X1, X5}
Cn((Elg(Xa)g(Xs) ) (BIR(X, Xa)h(X5, X3)[/2)%)
Cn((Elg(Xa)*Blg(Xs) ) (BIR(X, X2)P)2(BIR(X:, X)[)/2)2)
)

Cn((Elg(Xa)P P (BIR(X,, X2)))) (5.32)
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Proof of Lemma 5.4 For H;, we have

Hl =

therefore

|Hy| <

<

<

—%E(Z}(&? — BE) (W)
~5E (€ — B — fVO)]
& &
“5EdE [V s
—fE i(é? — E&) / 1 (I0<t<&) —1(& <t <0)f' (WD +t)di]

——ZE/ POV (€ ~ BEI0 < 1 <€)~ (& <1< 0)),

—2/ BFWO + 0| BE - BE)I0 <1 <€)~ 1(6 <t < 0)|dr

Cre o/t Z B|&)P
i=1

—w/4E93(X1)

Cze Tn

For H,, first write

H| < 2n3/22 (6D 0" (X0, X)) £

—1 i
< Slp(T e vex) Y (Bnonp)”
i=1 i
< S (Y ey rx)) ) (5:33)
i—1 i

therefore we need to calculate

E(Z (&Zw%xi,Xj)))z

=1

J#

- ZE(QZzp (X, X; ) +ZE<£¢Z¢*(Xi,Xk)€jZW(XjaXm))

j#i i#£j ki m#j

= nE(flzw Xl,Xj)> —i—n(n—1)E<51Z¢*(X1,Xk)52Zw*(Xme))

j#1 k#1 m#2
(5.34)
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By (5.31), we get
2 2
E<§1 Z¢*(X1,Xj)> < nER*(X,, X). (5.35)
71
By (5.32), we get

B(& >0 (X0, X6 Y v (X, X))
k#1 m#£2

< (n—2)B&YH (X0, Xa)ath™ (Xo, X) + n2{ E[6107 (X1, X3)]}
+2(n — 2) E&Y* (X7, X3) 60" (X7, Xo) + E& &Y™ (X, Xo)

< C{(Blg(X2)]P)*(EIh(X1, X2) 1) + (Elg(X1)[*)*}, (5.36)
where

E[flw*(X17X3)]
= BB (X1, X3)|X))]

= 6, E[&E(h(X1, X3) — (X1) + 0)|X1]

IN

o, Bleg(X)I(|g(X1)| > V)] + a0, 'n" 2B

< On'Elg(X)))?. (5.37)

Therefore we get

Cxe /8 Cxe */®n
Ho| < Zmm (PR (X Xa)' 7 4+ == (Blg(Xa) ) (BIR(X, X))
+Blg(X1))
Cxe™/8 ,
< = (Bl ) BN, X)P) P + Blg(X0)F). (5.39)
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5.3 Application to Studentized L-Statistics

5.3.1 Introduction

Let X1, ..., X,, beii.d. real random variables with distribution function F'. Define

F,, be the empirical distribution, which is,

F,(z)=n"" Z[{X" <z}
j=1
Let J(t) be a real-valued function on [0, 1] and

T(G) = /OO zJ(G(z))dG(x).

—00

The statistic T'(F},) is called an L-statistic. Write
o’ =0*J F) = / / J(F(s))J(F(t))F(min(s,t))(1 — F(max(s,t)))dsdt.
Clearly, 62 = 0?(J, F},,) is a natural estimate of 0.

For Studentized L-statistics, the rates of convergence to a normal distribution
have been studied by different authors. Helmers (1982) gave us a Berry-Esseen
bound of rate O(n~'/?) when assuming that E|X;|*° < oo, 0 > 0 and some
smoothness conditions on J(t). Wang, Jing, and Zhao (2000) weakened the
|3

moment condition to F|X;|® < oco.

5.3.2 Main Result

Define the distribution of the Studentized L-statistic by

Applying Theorem 3.1, we get the following result.
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Theorem 5.5. Assume that E|X|> < oo and 0 > 0. If the weight function

J(t) satisfying that J"(t) is bounded on t € [0,1], then we have

() — 00)) < - max { (BRI, (ELEEY)

5.3.3 Proof of Theorem 5.5.

We first truncate X; and then apply the theorem to the truncated sum. Let
Xi = X,LI<|XZ| < 77/1/20'),
then

P(Vne™\(T(F,) — T(F)) > x)
= P(Vné Y T(E,) — T(F)) >z, all |X;| <n'?0)
+P(v/no YT (F,) — T(F)) > z,|X;| > n*?c for some 1)

< P(Vno N (T(F,) — T(F)) >z, all | X;| <n'?0) + > P(IXi| > n'/%0)
=1
ElX,?

< P(Vno N (T(F,) = T(F)) >, all |X;| <n'?o)+ — .
nl/2q53

(5.39)

Therefore, we only need to consider /né~*(T(F,) —T(F)) when all | X;| < n'/?0.
Therefore we let Xi,...,X,, be i.i.d. real r.v.’s with distribution F and define
E, = 15" I(X; < z). To apply Theorem 3.1, we rewrite /no~(T'(F,) —
T(F))=1T/S, where

T(F,) —T(F 52
VIT(E) -T(F) o 8

o o2

Let ¢(t) = fot J(u)du. From Lemma B of Serfling [(1980), p.265], we have

1) 1) = - [ {o(E@) — v(r @) s,

—00

and hence we can write

T = Va(T(F,) ~ T(F))Jo = W + Ay,
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where

n

1 & [™ 1
W= —%;/W(I(Xigx)—F(x))J(F(x))dx ::T;Q(X)
A = VT

S

And following the results in Wang, Jing and Zhao (2000), we write

_1—|—n3z (Xi, X, Xi) + Van,
i#j#k

where

7<XZJX]7X]€> - gleX +¢(X17X Xk)

§(Xi, X;) = 2// I(X; < min(s,t))I(X; > max(s,t))
—F(min(s,t))(1 — F(max(s,t))))dsdt,
o(Xi, X5, Xi) = //J' (F(s) (I(X; <s)— F(s))

I(X; < min(s,t))I(X) > max(s,t))dsdt,

Vo, = Q1+ Q2+ Qs,

which satisfies

P(é/|;<0|3|Q1+Q21 >1> - %<E|j§1|3>2§%<13|?|3)8/37 (5.40)
P2 s1) < ADHNEENE L L(ENPY

and
(X)) < Ao (1K) + E|X4)), (5.42)
(X5, Xi)| < A())o (XD + X} + EXT), (5.43)
lp(Xi, X5, X3)| < A(J)o (X7 + X3). (5.44)

Noting Fa?(X;) = 1, it follows from (5.42) that

EX? _ <EX3>2/3

o2 =

A(J)

o3

ol



Therefore

P(v/ng~ (T(F,) — T(F)) > x)
W+ A

= P( > )
\/1 +n7? Zi#;&k (X, X, Xi) + Van
W+ A E| X,
< P : - > 0) 4 P(|Vaol > | 1L)
V117 (X, X, X + 22 Vo
< p W + Al : > {17)
\/1 +n7? Zz’;ﬁj;ﬁk Y(Xi, X, X)) + %
+L<E|X1|3)7/3+L<E|X1|3>8/3
Vn\ o3 vn\ o? '
Let
- E1X [
AQ = n 3 Z 7(X17X37Xk)+—37
i#ik Vo
B ElX?
AV = p3 Z Y(Xi, X5, Xy) + T
ik ALK Vo
To complete the proof, we need to prove the following results:
u CA(J)
A =AY, < E| X, |? 5.45
>l - ol < SEET (5.45)
- CA(J)?
Ay — AP, < E|X;? 5.46
> lehld = ol < SEEP (5.46)
x - re /Mt B X, P
— —EA f,(W)| <
’ 9 2f ( )‘ — 2 \/50.3
Cxe™/"2 1 A(J 2 A(J)?
nl/2 < 0<2>(E|X1|3)3 + 5‘3 E|X1|3>.
(5.47)
To prove (5.45), let
n oo
Ay = —% V(@) = 0(F(2) = (Fu(e) = F@)J(F(x))]d,
1
where F), (z) = — (F(x) + Z I(X; < x)) Then by Chen and Shao (2007),
" 1<j<n il
we get
EX?
E’Al|2 S g 21a
n o
EX?
ElA, - AVP < %—21
n?> o
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Therefore

3 "1 A(J EIX,[2)1/2
> lalla - A, < 30 A g e CENET

—1 o n g
CA(J

— ( 2>E’X1|2,
Vno

where p =2, ¢ = 2.

To prove (5.46), take [ = 1 as example, we get

1
D= = (DX X) - Y (XX X))

i#j#k i 5k i#L, AL k£L

_ %( S XX X+ DD XX X+ 3 (XX, X))

k£ i#k#1 i#j#1

_ %( ST X+ Y elXL X X))+ Y (XL X))

kAL kAL i#hA1
Y XX X+ D € X)) Y (X, X, X))
i#hA1 i#j#1 i#j#1
Therefore

E|A; — AP

¢ / / /
< W(ﬂ SToex, X))+ B Y o, x5, X0+ B YD e, x|

kAL #kA1 i#k#1
3/2 3/2 3/2
+E| ST o XL, X)) [P+ B Y e X)) [P+ BL Y o, X5, X)) /)
i#k#1 i#j#1 i#j#1
Cn?
< n9/2 <E|5(X1; X)) + Elo(Xy, X;, X3) P + EJE(X, X0) [
+E’90(X17X17Xk)’3/2+E’£(XZ7XJ)‘5/2+E‘90<X17X]7X1)‘3/2>
C
< o (E|£<X1, X0)2 + Blp(X, X, Xy)|2)
C A(J)? 3
< W o3 E|X1|7
then

(Bl — a0 < S gy pyere

02

Then note that



we have

n

nl2 o

IN

l
S el la: — AP, (B X PP
=1 =1

CA(J)?
Vi

E‘X1‘3>

where p = 3, ¢ = 3/2.

To prove (5.47), now we calculate EA, f,(W). Note that here A, = Ay — £A,,

where
M= YT B@) — EE @) — (Fale) — F@)IE)]
- E|X,
AQ = Xl: + 37
z;k \/ﬁa

As proved before, we have E|f,(W)| < Ce=*/*, and

C EX?
E|A1|2§E 021, (5.48)
therefore
B EXQ /
E|Af,(W)] < (O - ) ,
n o
071/8 EX?2 1/2
< f/_ (EX)T (5.49)
n o
Note that
T = _ E’X1’3 -
—SEAf,(W) = ——E 3 (X, X )+ fo(W)
L, (02 o
xr 1 - I’E‘Xl‘g —
= ——F|—= X, X, X (W) — = Ef,(W
: (;ﬂ : k>)f< ) - 2E
= H; + Ho,
where
T ve~** B X,)?
H)| < F|—=LEYf, )
| 2|— \/— f( )'— ) \/ﬁo_g

54



To estimate Hy, we first write

Y (XX

i#j#k
6
1<j<k
1
= 5 > (X X X0 (X X X)) (X, X X

i<j<k

+’7(XJ'7 Xk’ XZ) + V(Xka Xi> XJ) + ’Y(Xka Xj> Xz)]

1
== > WX, X, Xp)

i<j<k
where h(X;, Xj, X}) is a symmetric function satisfying Eh(X;, X;, X;) = 0. Then

) =y (X, X ZhXZ,
3

1£j#k l<j<k‘

is a U-statistic with rank r = 1. Then by Hoeffding’s representation, we let
gi(z1) = Eh(zy, Xa, X3),
g2(1,02) = Eh(z1, 79, X3) — 91(551) — g1(z2),

93(w1,72,23) = Eh(z1,22,73) Zgl (i) Z 92(xi, ),

1<i<j<3

-1
UnC - (n) Z gc(Xi]_7 ceey Xic)7 fOl" C = 17 27 3

C . .
1<i1<...<ic<n

Then we get

( thz,

1<j<k

— %n gl(Xj)+3<Z)_l Z gz(Xz',XjH(Z)_l Z 95(Xi, X, Xi)

1<i<j<k<n

Note that

Esup [f' (WY +1)| < e/,

t<1
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we get

7=1
3 < - — i
= —EY ai(X;) (F(W) — f(WD)
j=1
< —ZE|g1 DEGIE (S|upl‘f (W) —|—t)|>
t)1<
,x/4 n
< ZE|91
Ce™/* & 3/2\2/3( | £ 13\1/3
< > (Elgi (X)) (EIG)%)
j=1
Ce "/*A(J)?
T,
Vno
Using Theorem 2.1.3 in Koroljuk and Borovskich (1994), we get
3/2
> h(X;, X
(3 1<j<k
3\ 3/2 7N 12
< V3 2) B g2 5.50
_fz() () (V3 Elgd (5.50
Therefore
12v/2
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1
¢ (3 BlaX0, X + i Blan (X1, 0, X))
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A 3/2
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Then we get

Bladsfo(W)] < o (EIA312)" (BIL(D)F)

Cre /"2 A(J)

n2/3q2
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wl=
IA
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Then we get

H| < (ng > (XL X )fx( )|

i#j#k
T (% Zgl(Xj) + AZ) fz (W)

Crxe =12 [ A(J A(J)?
(2w + 2 pxp)

nl/2

IN

Then we get the proof of (5.47). Next we estimate
E|Af + B |Ry| + e EALY
I+

Using (5.50) again, we get

B E|X1|3
E|A7 = En™ Y (X, X 3
it Ve
3/2 C EX,
< Z h(X:, X + 2]
- ’ 3/4 3
( 1<j<k ?7// \/_U
111 sp C EIX P
< C(%JFEJFW)EW()Q,XLX:S)’ T oA Jno?
CA(J)3?
< DTy
Vno
For |A;| < #H and |A,| < 1, we get
BI&[ + B
1+2
C
< E|A+ ——E|A,P?
< EJA] +1+x | Ay
CEX?  CA(J)*?
——14 L) E|X |3 (5.51)

n o2 (1+ z)y/no3
Noting

3

ElX
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5.52
Py ~Jio? (5.52)
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it follows from (5.50) and | X;| < /no that

i

Ve oo oo (EXEY
eV 4 CE|A; Y +C ( \/ﬁ;3 ) Ee%

‘ 3

C & E|X,|?
n

V/no? Vno?

C < . E|X
— 2 0(X) + A5+ X,
j=1

< 1/4) e

IN
Q
&5

2

eW+mmmmem+c(

IN

3 2
Cr E| X )
77,2

V/no?

Zgl (Xj)

C [ o (CAWPREX P\ EIX, 2\
< —F 2 X X. X w
= 2 (;9 (Xj) + ;9( i)9( k)) e’ + ( —3 +C —\/ﬁg?»

C < 2 & W) C (E|X]? 13 o E|X, 2
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< i E‘X1|3 7/3+i E’X1’3 4/3+ g E|X1|3 2 (5 53)
= n o3 2/3 o3 o e . )

Combining (5.39) (5.40), (5.41), (5.45), (5.46), (5.47), (5.49), (5.51) and (5.53),

we get
| H () — ®(x)]
3 3 3 —z/8 3 3
< E|X1| +£(E|X1| )8/3_|_£<E‘X1‘ )7/3+Ce (E|X1’ )4/3_|_£(E’X1’ )7/3
nt/2g3 ~ \/n> o3 vn' o o3 NZD o’ Vn'o o3
ze~ /4 B| X, [? C«Ie—x/m((E|X1|3)4/3 N (E|X1|3)7/3) N Q(E|X1|3)2/3
2 /nod nl/2 o3 o3 n' o3
+ C (E’X1’3)3+ E(E’X1’3)7/3+ i(E|X1|3)4/3_|_ Q(E|X1|3)2
Vn(l+|z]3)" o3 Voo ool n?3* o3 n' od
C EXiP s EIXaP s
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Chapter 6

Conclusion and Future Work

In this thesis, we extend the use of Stein’s method. We obtains a non-uniform
Berry-Esseen bound for a class of Studentized statistics via Stein’s method and
a randomized concentration inequality. In Chapter 5, we apply the Berry-Esseen
bound we obtained to three studentized statistics. The result of Student’s t-
statistics, Studentized U-statistics and L-statistics are as good as the existing

ones.

In the future, we wish to apply our result to some other studentized statistics
to get more applications. For example, we will try to apply it to a studentized
random sum and this is still under study. We are also interested in applying
our result to a U-statistics U, = @ > i<icj<n MXi; Xj) to check whether we
can get |P(U, < x) — ®(z)] < % under conditions E|h(X1, X5)|?/? < oo and
E|lg(X)]? < oo, which are the weakest moment conditions for U-statistics. In
addition, we used a randomized concentration inequality in our proof. This in-

equality may have more applications in proving Berry-Esseen bounds for some

other class of statistics in the future.
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